Inner Automorphisms of Presheaves of Groups

被引:0
|
作者
Jason Parker
机构
[1] Brandon University,Department of Mathematics and Computer Science
来源
关键词
Inner automorphism; Isotropy; Quasi-equational theory; Presheaf; Conjugation; 08A35; 08C05; 18C10; 20A15; 20J15;
D O I
暂无
中图分类号
学科分类号
摘要
It has been proven by Schupp and Bergman that the inner automorphisms of groups can be characterized purely categorically as those group automorphisms that can be coherently extended along any outgoing homomorphism. One is thus motivated to define a notion of (categorical) inner automorphism in an arbitrary category, as an automorphism that can be coherently extended along any outgoing morphism, and the theory of such automorphisms forms part of the theory of covariant isotropy. In this paper, we prove that the categorical inner automorphisms in any category GroupJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{Group}^\mathcal {J}$$\end{document} of presheaves of groups can be characterized in terms of conjugation-theoretic inner automorphisms of the component groups, together with a natural automorphism of the identity functor on the index category J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {J}$$\end{document}. In fact, we deduce such a characterization from a much more general result characterizing the categorical inner automorphisms in any category TmodJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}\textsf{mod}^\mathcal {J}$$\end{document} of presheaves of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}-models for a suitable first-order theory T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] On the inner automorphisms of a singular foliation
    Garmendia, Alfonso
    Yudilevich, Ori
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (1-2) : 725 - 729
  • [42] Central automorphisms that are almost inner
    Curran, MJ
    McCaughan, DJ
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (05) : 2081 - 2087
  • [43] INNER AUTOMORPHISMS AND SOME THEIR GENERALIZATIONS
    Neshchadim, M., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 1383 - 1400
  • [44] Inner automorphisms of Clifford monoids
    Shah, Aftab Hussain
    Mir, Dilawar Juneed
    Quinn-Gregson, Thomas
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (04): : 1060 - 1074
  • [45] Power Automorphisms and Induced Automorphisms in Finite Groups
    Guo, Xiuyun
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ALGEBRA 2010: ADVANCES IN ALGEBRAIC STRUCTURES, 2012, : 321 - 331
  • [46] ON INNER AUTOMORPHISMS AND CENTRAL AUTOMORPHISMS OF NILPOTENT GROUP OF CLASS 2
    Azhdari, Zahedeh
    Akhavan-Malayeri, Mehri
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (06) : 1283 - 1290
  • [47] On groups of automorphisms.
    Hall, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1940, 182 (1/4): : 194 - 204
  • [48] On Normal Automorphisms of Groups
    T. Xu
    H. Liu
    Mathematical Notes, 2021, 110 : 982 - 986
  • [49] AUTOMORPHISMS IN VARIETIES OF GROUPS
    BRYANT, RM
    PAPISTAS, AI
    JOURNAL OF ALGEBRA, 1995, 171 (01) : 258 - 271
  • [50] Noetherian Automorphisms of Groups
    Fausto De Mari
    Francesco de Giovanni
    Mediterranean Journal of Mathematics, 2005, 2 : 125 - 135