Moisture content estimation of forest litter based on remote sensing data

被引:0
|
作者
Xiguang Yang
Ying Yu
Haiqing Hu
Long Sun
机构
[1] Northeast Forestry University,Key Laboratory of Saline
[2] Northeast Forestry University,Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC)
来源
Environmental Monitoring and Assessment | 2018年 / 190卷
关键词
Spectral analysis; Background reflectance; Geometrical-optical model;
D O I
暂无
中图分类号
学科分类号
摘要
As a fine fuel, forest litter plays an important role in fire danger rating systems, so forest litter moisture data are necessary and meaningful for fire risk management and prevention. An optical remote sensing technique can provide continuous and regional data for litter moisture estimates, but such an approach is restricted in separating the background reflectance of the forest floor from pixel reflectance because the litter moisture information is included only in background reflectance while pixel reflectance in the forest area consists of both canopy reflectance and background reflectance. Therefore, we present a geometrical-optical model to estimate forest litter moisture by separating contributions of background reflectance from the remote sensing image and use a statistical model to estimate the forest litter moisture content based on the calculated background reflectance. The results show that the model had an R2, root mean square error (RMSE), and average precision of 0.595, 0.372, and 69.654%, respectively. This approach provides a new way of estimating forest litter moisture content from an optical remote sensing image, and it can potentially be applied in large-scale forest litter moisture content mapping.
引用
收藏
相关论文
共 50 条
  • [31] Tropical Monsoon Forest Thermodynamics Based on Remote Sensing Data
    Sandlersky, Robert
    ENTROPY, 2020, 22 (11) : 1 - 17
  • [32] Soil Moisture Content Retrieval from Remote Sensing Data by Artificial Neural Network Based on Sample Optimization
    Liu, Qixin
    Gu, Xingfa
    Chen, Xinran
    Mumtaz, Faisal
    Liu, Yan
    Wang, Chunmei
    Yu, Tao
    Zhang, Yin
    Wang, Dakang
    Zhan, Yulin
    SENSORS, 2022, 22 (04)
  • [33] Moisture Content Vegetation Seasonal Variability Based on a Multiscale Remote Sensing Approach
    Santos, Filippe L. M.
    Rodrigues, Goncalo
    Potes, Miguel
    Couto, Flavio T.
    Costa, Maria Joao
    Dias, Susana
    Monteiro, Maria Jose
    Ribeiro, Nuno de Almeida
    Salgado, Rui
    REMOTE SENSING, 2024, 16 (23)
  • [34] Remote Sensing Monitoring of Soil Surface Moisture Content Based on LM Algorithm
    Xu J.
    Wang L.
    Wang Y.
    Zhao Z.
    Han W.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (06): : 233 - 240
  • [35] ESTIMATION OF UKRAINIAN FOREST COVER (WESTERN POLISSIA) USING REMOTE SENSING DATA
    Movchan, D. M.
    SPACE SCIENCE AND TECHNOLOGY-KOSMICNA NAUKA I TEHNOLOGIA, 2013, 19 (04): : 29 - 43
  • [36] ESTIMATION OF FOREST PARAMETERS COMBINING MULTISENSOR HIGH RESOLUTION REMOTE SENSING DATA
    Morin, David
    Planells, Milena
    Guyon, Dominique
    Villard, Ludovic
    Dedieu, Gerard
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8801 - 8804
  • [37] Estimation of soil moisture with hyperspectral reflectance based on ground-based remote sensing
    Li, MZ
    Zhao, P
    Zhang, XJ
    MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING INSTRUMENTS AND APPLICATIONS II, 2005, 5655 : 309 - 317
  • [38] Remote Sensing Estimation of Grassland Aboveground Biomass based on Random Forest
    Xing X.
    Yang X.
    Xu B.
    Jin Y.
    Guo J.
    Chen A.
    Yang D.
    Wang P.
    Zhu L.
    Journal of Geo-Information Science, 2021, 23 (07) : 1312 - 1324
  • [39] Optical remote sensing for forest area estimation
    Wynne, RH
    Oderwald, RG
    Reams, GA
    Scrivani, JA
    JOURNAL OF FORESTRY, 2000, 98 (05) : 31 - 36
  • [40] Comparison of different methods for the in situ measurement of forest litter moisture content
    Schunk, C.
    Ruth, B.
    Leuchner, M.
    Wastl, C.
    Menzel, A.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2016, 16 (02) : 403 - 415