Finite-Time Blow-up in a Quasilinear Degenerate Chemotaxis System with Flux Limitation

被引:0
|
作者
Yuka Chiyoda
Masaaki Mizukami
Tomomi Yokota
机构
[1] Tokyo University of Science,Department of Mathematics
来源
关键词
Degenerate chemotaxis system; Flux limitation; Finite-time blow-up; 35B44; 35K65; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the quasilinear degenerate chemotaxis system with flux limitation {ut=∇⋅(up∇uu2+|∇u|2)−χ∇⋅(uq∇v1+|∇v|2),x∈Ω,t>0,0=Δv−μ+u,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} u_{t} = \nabla \cdot \biggl(\frac{u^{p} \nabla u}{\sqrt{u^{2} + | \nabla u|^{2}}} \biggr) -\chi \nabla \cdot \biggl( \frac{u^{q} \nabla v}{\sqrt{1 + |\nabla v|^{2}}} \biggr), &x\in \varOmega ,\ t>0, \\ 0 = \Delta v - \mu + u, &x\in \varOmega ,\ t>0, \end{cases}\displaystyle \end{aligned}$$ \end{document} where Ω:=BR(0)⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varOmega := B_{R}(0) \subset \mathbb{R}^{n}$\end{document} (n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \in \mathbb{N}$\end{document}) is a ball with some R>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R>0$\end{document}, and χ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi >0$\end{document}, p,q≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p,q\geq 1$\end{document}, μ:=1|Ω|∫Ωu0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu := \frac{1}{| \varOmega |} \int _{\varOmega }u_{0}$\end{document} and u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{0}$\end{document} is an initial data of an unknown function u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u$\end{document}. Bellomo–Winkler (Trans. Am. Math. Soc. Ser. B 4, 31–67, 2017) established existence of an initial data such that the corresponding solution blows up in finite time when p=q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p=q=1$\end{document}. This paper gives existence of blow-up solutions under some condition for χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi $\end{document} and u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{0}$\end{document} when 1≤p≤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq p\leq q$\end{document}.
引用
收藏
页码:231 / 259
页数:28
相关论文
共 50 条
  • [31] Finite-time blow-up of classical solutions to the rotating shallow water system with degenerate viscosity
    Duan, Ben
    Luo, Zhen
    Yan, Wei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [32] On effects of the nonlinear signal production to the boundedness and finite-time blow-up in a flux-limited chemotaxis model
    Tu, Xinyu
    Mu, Chunlai
    Zheng, Pan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (04): : 647 - 711
  • [33] Blow-up of solutions for a quasilinear system with degenerate damping terms
    Salah Boulaaras
    Abdelbaki Choucha
    Praveen Agarwal
    Mohamed Abdalla
    Sahar Ahmed Idris
    Advances in Difference Equations, 2021
  • [34] Blow-up of solutions for a quasilinear system with degenerate damping terms
    Boulaaras, Salah
    Choucha, Abdelbaki
    Agarwal, Praveen
    Abdalla, Mohamed
    Idris, Sahar Ahmed
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [35] Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species
    Li, Yan
    Li, Yuxiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 109 : 72 - 84
  • [36] Finite-time blow-up in dynamical systems
    Goriely, A
    Hyde, C
    PHYSICS LETTERS A, 1998, 250 (4-6) : 311 - 318
  • [37] ON THE FINITE-TIME BLOW-UP OF A NON-LOCAL PARABOLIC EQUATION DESCRIBING CHEMOTAXIS
    Kavallaris, Nikos I.
    Suzuki, Takashi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (03) : 293 - 308
  • [38] Finite-time blow-up of solution for a chemotaxis model with singular sensitivity and logistic source
    Zhang, Jing
    Mu, Chunlai
    Tu, Xinyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [39] Finite-time blow-up of solution for a chemotaxis model with singular sensitivity and logistic source
    Jing Zhang
    Chunlai Mu
    Xinyu Tu
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [40] A quasilinear chemotaxis-haptotaxis system: Existence and blow-up results
    Rani, Poonam
    Tyagi, Jagmohan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 402 : 180 - 217