Finite-Time Blow-up in a Quasilinear Degenerate Chemotaxis System with Flux Limitation

被引:0
|
作者
Yuka Chiyoda
Masaaki Mizukami
Tomomi Yokota
机构
[1] Tokyo University of Science,Department of Mathematics
来源
关键词
Degenerate chemotaxis system; Flux limitation; Finite-time blow-up; 35B44; 35K65; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the quasilinear degenerate chemotaxis system with flux limitation {ut=∇⋅(up∇uu2+|∇u|2)−χ∇⋅(uq∇v1+|∇v|2),x∈Ω,t>0,0=Δv−μ+u,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} u_{t} = \nabla \cdot \biggl(\frac{u^{p} \nabla u}{\sqrt{u^{2} + | \nabla u|^{2}}} \biggr) -\chi \nabla \cdot \biggl( \frac{u^{q} \nabla v}{\sqrt{1 + |\nabla v|^{2}}} \biggr), &x\in \varOmega ,\ t>0, \\ 0 = \Delta v - \mu + u, &x\in \varOmega ,\ t>0, \end{cases}\displaystyle \end{aligned}$$ \end{document} where Ω:=BR(0)⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varOmega := B_{R}(0) \subset \mathbb{R}^{n}$\end{document} (n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \in \mathbb{N}$\end{document}) is a ball with some R>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R>0$\end{document}, and χ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi >0$\end{document}, p,q≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p,q\geq 1$\end{document}, μ:=1|Ω|∫Ωu0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu := \frac{1}{| \varOmega |} \int _{\varOmega }u_{0}$\end{document} and u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{0}$\end{document} is an initial data of an unknown function u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u$\end{document}. Bellomo–Winkler (Trans. Am. Math. Soc. Ser. B 4, 31–67, 2017) established existence of an initial data such that the corresponding solution blows up in finite time when p=q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p=q=1$\end{document}. This paper gives existence of blow-up solutions under some condition for χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi $\end{document} and u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{0}$\end{document} when 1≤p≤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq p\leq q$\end{document}.
引用
收藏
页码:231 / 259
页数:28
相关论文
共 50 条
  • [1] Finite-Time Blow-up in a Quasilinear Degenerate Chemotaxis System with Flux Limitation
    Chiyoda, Yuka
    Mizukami, Masaaki
    Yokota, Tomomi
    ACTA APPLICANDAE MATHEMATICAE, 2020, 167 (01) : 231 - 259
  • [2] Finite-time blow-up in a quasilinear system of chemotaxis
    Cieslak, Tomasz
    Winkler, Michael
    NONLINEARITY, 2008, 21 (05) : 1057 - 1076
  • [3] Boundedness and Finite-Time Blow-up in a Chemotaxis System with Flux Limitation and Logistic Source
    Kohatsu, Shohei
    ACTA APPLICANDAE MATHEMATICAE, 2024, 191 (01)
  • [4] FINITE-TIME BLOW-UP IN A QUASILINEAR CHEMOTAXIS SYSTEM WITH AN EXTERNAL SIGNAL CONSUMPTION
    Zheng, Pan
    Mu, Chunlai
    Hu, Xuegang
    Wang, Liangchen
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 53 (01) : 25 - 41
  • [5] Extensibility criterion ruling out gradient blow-up in a quasilinear degenerate chemotaxis system with flux limitation
    Mizukami, Masaaki
    Ono, Tatsuhiko
    Yokota, Tomomi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5115 - 5164
  • [6] FINITE-TIME BLOW-UP IN A QUASILINEAR DEGENERATE PARABOLIC-ELLIPTIC CHEMOTAXIS SYSTEM WITH LOGISTIC SOURCE AND NONLINEAR PRODUCTION
    Tanaka, Yuya
    Yokota, Tomomi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 262 - 286
  • [7] Boundedness and finite-time blow-up in a Keller-Segel chemotaxis-growth system with flux limitation
    Chen, Chunmei
    Zheng, Pan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [8] FINITE-TIME BLOW-UP CRITERION FOR A COMPETING CHEMOTAXIS SYSTEM
    Lin, Ke
    Wang, Sheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (09): : 3908 - 3954
  • [9] Blow-up phenomena for a chemotaxis system with flux limitation
    Marras, M.
    Vernier-Piro, S.
    Yokota, T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (01)
  • [10] Boundedness and finite-time blow-up in a quasilinear parabolic–elliptic–elliptic attraction–repulsion chemotaxis system
    Yutaro Chiyo
    Tomomi Yokota
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73