Revealing epilepsy type using a computational analysis of interictal EEG

被引:0
|
作者
Marinho A. Lopes
Suejen Perani
Siti N. Yaakub
Mark P. Richardson
Marc Goodfellow
John R. Terry
机构
[1] University of Exeter,Living Systems Institute
[2] University of Exeter,Centre for Biomedical Modelling and Analysis
[3] University of Exeter,EPSRC Centre for Predictive Modelling in Healthcare
[4] Institute of Psychiatry,undefined
[5] Psychology and Neuroscience,undefined
[6] King’s College London,undefined
[7] King’s College Hospital NHS Foundation Trust,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Seizure onset in epilepsy can usually be classified as focal or generalized, based on a combination of clinical phenomenology of the seizures, EEG recordings and MRI. This classification may be challenging when seizures and interictal epileptiform discharges are infrequent or discordant, and MRI does not reveal any apparent abnormalities. To address this challenge, we introduce the concept of Ictogenic Spread (IS) as a prediction of how pathological electrical activity associated with seizures will propagate throughout a brain network. This measure is defined using a person-specific computer representation of the functional network of the brain, constructed from interictal EEG, combined with a computer model of the transition from background to seizure-like activity within nodes of a distributed network. Applying this method to a dataset comprising scalp EEG from 38 people with epilepsy (17 with genetic generalized epilepsy (GGE), 21 with mesial temporal lobe epilepsy (mTLE)), we find that people with GGE display a higher IS in comparison to those with mTLE. We propose IS as a candidate computational biomarker to classify focal and generalized epilepsy using interictal EEG.
引用
收藏
相关论文
共 50 条
  • [21] INTERICTAL EEG PATTERN IN RABBIT PENICILLIN EPILEPSY
    GALLITTO, G
    MUSOLINO, R
    BONANZINGA, M
    DEDOMENICO, P
    DISTEFANO, G
    SERRA, S
    DIPERRI, R
    ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES, 1986, 7 (04): : 413 - 420
  • [22] Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG
    Gadhoumi, Kais
    Lina, Jean-Marc
    Gotman, Jean
    CLINICAL NEUROPHYSIOLOGY, 2012, 123 (10) : 1906 - 1916
  • [23] Interpretable Epilepsy Detection in Routine, Interictal EEG Data using Deep Learning
    Uyttenhove, Thomas
    Maes, Aren
    Van Steenkiste, Tom
    Deschrijver, Dirk
    Dhaene, Tom
    MACHINE LEARNING FOR HEALTH, VOL 136, 2020, 136 : 355 - 366
  • [24] Interictal EEG changes in patients with epilepsy and comorbidity of depression dementia or interictal psychosis
    Grabowska-Grzyb, A
    Jedrzejczak, J
    Naganska, E
    Naganska, E
    Fiszer, U
    EPILEPSIA, 2005, 46 : 182 - 182
  • [25] Interictal spike analysis of high-density EEG in patients with partial epilepsy
    Wang, Gang
    Worrell, Gregory
    Yang, Lin
    Wilke, Christopher
    He, Bin
    CLINICAL NEUROPHYSIOLOGY, 2011, 122 (06) : 1098 - 1105
  • [26] Analysis of generalized interictal discharges using quantitative EEG
    da Silva Braga, Aline Marques
    Fujisao, Elaine Keiko
    Betting, Luiz Eduardo
    EPILEPSY RESEARCH, 2014, 108 (10) : 1740 - 1747
  • [27] Interictal to ictal transition in human temporal lobe epilepsy: Insights from a computational model of intracerebral EEG
    Wendling, F
    Hernandez, AF
    Bellanger, JJ
    Chauvel, P
    Bartolomei, F
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2005, 22 (05) : 343 - 356
  • [28] Focal epilepsy: EEG interictal patterns and etiology correlation
    Lagnf, Abdalhamid
    Souidan, Hassan
    Abdelrahman, M. Alsherbini
    Machado, Rene Andrade
    Elsayed, Mona
    NEUROLOGY, 2023, 100 (17)
  • [29] Sleep and EEG interictal epileptiform abnormalities in partial epilepsy
    Gigli, GL
    Valente, M
    CLINICAL NEUROPHYSIOLOGY, 2000, 111 : S60 - S64
  • [30] DOES THE INTERICTAL EEG HAVE A ROLE IN THE DIAGNOSIS OF EPILEPSY
    GOODIN, DS
    AMINOFF, MJ
    LANCET, 1984, 1 (8381): : 837 - 839