The lévy constant of an irrational number

被引:0
|
作者
C. Faivre
机构
[1] Centre de Mathématiques et Informatique de L’Université de Provence,
来源
Acta Mathematica Hungarica | 1997年 / 74卷
关键词
Ergodic Theorem; Irrational Number; Continue Fraction Expansion; Quadratic Number; Famous Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:57 / 61
页数:4
相关论文
共 50 条
  • [31] Simulations of Lévy Walk
    Abhignan V.
    Rajadurai S.
    Journal of The Institution of Engineers (India): Series B, 2021, 102 (06) : 1243 - 1247
  • [32] Lévy Laplacians and instantons
    B. O. Volkov
    Proceedings of the Steklov Institute of Mathematics, 2015, 290 : 210 - 222
  • [33] The Lévy LIBOR model
    Ernst Eberlein
    Fehmi Özkan
    Finance and Stochastics, 2005, 9 : 327 - 348
  • [34] A Lévy flight for light
    Pierre Barthelemy
    Jacopo Bertolotti
    Diederik S. Wiersma
    Nature, 2008, 453 : 495 - 498
  • [35] Functional L,vy walks
    Romanovsky, M. Yu.
    PHYSICS OF WAVE PHENOMENA, 2009, 17 (03) : 228 - 232
  • [36] Functional Lévy walks
    M. Yu. Romanovsky
    Physics of Wave Phenomena, 2009, 17 : 228 - 232
  • [37] Classical robots perturbed by Lévy processes: analysis and Lévy disturbance rejection methods
    Rohit Singla
    Harish Parthasarathy
    Vijyant Agarwal
    Nonlinear Dynamics, 2017, 89 : 553 - 575
  • [38] The number of minima in random landscapes generated by constrained random walk and Lévy flights: universal properties
    Kundu, Anupam
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (03)
  • [39] Continued fraction and decimal expansions of an irrational number
    Wu, Jun
    ADVANCES IN MATHEMATICS, 2006, 206 (02) : 684 - 694
  • [40] A note on the number of irrational odd zeta values
    Lai, Li
    Yu, Pin
    COMPOSITIO MATHEMATICA, 2020, 156 (08) : 1699 - 1717