On the binary codes with parameters of doubly-shortened 1-perfect codes

被引:0
|
作者
Denis S. Krotov
机构
[1] Sobolev Institute of Mathematics,Mechanics and Mathematics Department
[2] Novosibirsk State University,undefined
来源
关键词
1-Perfect code; Doubly-shortened 1-perfect code; Equitable partition; Perfect coloring; Weight distribution; Distance distribution; Embedding; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
We show that any binary (n = 2k − 3, 2n−k, 3) code C1 is a cell of an equitable partition (perfect coloring) (C1, C2, C3, C4) of the n-cube with the quotient matrix ((0, 1, n−1, 0)(1, 0, n−1, 0)(1, 1, n−4, 2)(0, 0, n−1, 1)). Now the possibility to lengthen the code C1 to a 1-perfect code of length n + 2 is equivalent to the possibility to split the cell C4 into two distance-3 codes or, equivalently, to the biparticity of the graph of distances 1 and 2 of C4. In any case, C1 is uniquely embedable in a twofold 1-perfect code of length n + 2 with some structural restrictions, where by a twofold 1-perfect code we mean that any vertex of the space is within radius 1 from exactly two codewords. By one example, we briefly discuss 2 − (n, 3, 2) multidesigns with similar restrictions. We also show a connection of the problem with the problem of completing latin hypercuboids of order 4 to latin hypercubes.
引用
收藏
页码:181 / 194
页数:13
相关论文
共 50 条
  • [41] CLASS OF BINARY SHORTENED CYCLIC CODES FOR A COMPOUND CHANNEL
    HSU, HT
    INFORMATION AND CONTROL, 1971, 18 (02): : 126 - &
  • [42] New recognition method for binary shortened BCH codes
    Liu J.
    Zhang L.
    Fang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2017, 44 (06): : 92 - 98
  • [43] NEW SHORTENED SUBCODES OF BINARY EXTENDED QR CODES
    CHEN, X
    REED, IS
    YIN, X
    TRUONG, TK
    IEE PROCEEDINGS-COMMUNICATIONS, 1994, 141 (01): : 2 - 6
  • [44] Perfect binary codes with trivial automorphism group
    Avgustinovich, SV
    Solov'eva, FI
    1998 INFORMATION THEORY WORKSHOP - KILLARNEY, IRELAND, 1998, : 114 - 115
  • [45] On enumeration of the perfect binary codes of length 15
    Malyugin, SA
    DISCRETE APPLIED MATHEMATICS, 2004, 135 (1-3) : 161 - 181
  • [46] Obtaining Binary Perfect Codes Out of Tilings
    Miyamoto, Gabriella Akemi
    Firer, Marcelo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (10) : 6121 - 6132
  • [47] Local and interweight spectra of perfect binary codes
    Vasil'eva, AY
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 474 - 474
  • [48] On nonsystematic perfect binary codes of length 15
    Romanov, AM
    DISCRETE APPLIED MATHEMATICS, 2004, 135 (1-3) : 255 - 258
  • [49] Rank Spectrum of Propelinear Perfect Binary Codes
    Guskov, George K.
    Mogilnykh, Ivan Yu.
    Solov'eva, Faina I.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 879 - +
  • [50] On a lower bound on the number of perfect binary codes
    Malyugin, SA
    DISCRETE APPLIED MATHEMATICS, 2004, 135 (1-3) : 157 - 160