Harmonic spirallike functions and harmonic strongly starlike functions

被引:0
|
作者
Xiu-Shuang Ma
Saminathan Ponnusamy
Toshiyuki Sugawa
机构
[1] Tohoku University,Graduate School of Information Sciences
[2] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Harmonic mapping; -argument; Spirallike functions; Strongly starlike functions; Convolution; Primary 30C55; Secondary 30C45; 31A05;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we define two subclasses of normalized harmonic univalent functions of the unit disk, spirallike functions and strongly starlike functions, which preserve a hereditary property and have nice analytic and geometric characterizations. We also investigate the uniform boundedness and quasiconformal extendability of strongly starlike functions. Some coefficient conditions can be given for strong starlikeness and spirallikeness. We consider a special form of harmonic functions as an application.
引用
收藏
页码:363 / 375
页数:12
相关论文
共 50 条
  • [21] Harmonic mappings related to Janowski starlike functions
    Kahramaner, Yasemin
    Polatoglu, Yasar
    Aydogan, Melike
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 270 : 564 - 570
  • [22] Partial Sums of Starlike Harmonic Univalent Functions
    Porwal, Saurabh
    Dixit, Kaushal Kishore
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (03): : 433 - 445
  • [23] Harmonic Starlike Functions with Respect to Symmetric Points
    Cho, Nak Eun
    Dziok, Jacek
    AXIOMS, 2020, 9 (01)
  • [24] Bounded Harmonic Mappings Related to Starlike Functions
    Varol, Durdane
    Aydogan, Melike
    Polatoglu, Yasar
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 644 - 649
  • [25] ON MEROMORPHIC HARMONIC STARLIKE FUNCTIONS WITH MISSING COEFFICIENTS
    Bostanci, Hakan
    Ozturk, Metin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2009, 38 (02): : 173 - 183
  • [26] Certain subclasses of meromorphic harmonic starlike functions
    Ozturk, M.
    Bostanci, H.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (05) : 377 - 385
  • [27] Connecting Quantum Calculus and Harmonic Starlike Functions
    Ahuja, O. P.
    Cetinkaya, A.
    FILOMAT, 2020, 34 (05) : 1431 - 1441
  • [28] A new subclass of the meromorphic harmonic starlike functions
    Bostanci, Hakan
    Ozturk, Metin
    APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1027 - 1032
  • [29] On Janowski starlike and convex meromorphic harmonic functions
    J. Dziok
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [30] SUBCLASS OF HARMONIC STARLIKE FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE
    Darwish, H. E.
    Lashin, A. Y.
    Soileh, S. M.
    MATEMATICHE, 2014, 69 (02): : 147 - 158