Cosmological evolution of interacting dark energy in Lorentz violation

被引:0
|
作者
Freddy P. Zen
Bobby E. Arianto
A. Gunara
机构
[1] THEPI Devision,Theoretical Physics Lab.
[2] Institut Teknologi Bandung,Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Faculty of Mathematics and Natural Sciences
[3] Udayana University,Department of Physics
[4] Institut Teknologi Sepuluh November,Department of Physics
来源
关键词
98.80.Cq; 98.80.-k;
D O I
暂无
中图分类号
学科分类号
摘要
The cosmological evolution of an interacting scalar-field model in which the scalar field interacts with dark matter, radiation, and baryons via Lorentz violation is investigated. We propose a model of interaction through the effective coupling, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{\beta}$\end{document} . Using dynamical system analysis, we study the linear dynamics of an interacting model and show that the dynamics of critical points are completely controlled by two parameters. Some results can be mentioned as follows. Firstly, the sequence of radiation, the dark matter, and the scalar-field dark energy exist and baryons are subdominant. Secondly, the model also allows for the possibility of having a universe in the phantom phase with constant potential. Thirdly, the effective gravitational constant varies with respect to time through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{\beta}$\end{document} . In particular, we consider the simple case where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{\beta}$\end{document} has a quadratic form and has a good agreement with the modified ΛCDM and quintessence models. Finally, we also calculate the first post-Newtonian parameters for our model.
引用
收藏
页码:477 / 490
页数:13
相关论文
共 50 条
  • [11] Interacting dark energy and cosmological equations of state
    Zimdahl, W
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (12): : 2319 - 2325
  • [12] Imprints of interacting dark energy on cosmological perturbations
    Sharma, Mohit Kumar
    Sur, Sourav
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2022, 31 (03):
  • [13] Cosmological implications of an interacting model of dark matter & dark energy
    Mishra, Keshav Ram
    Pacif, Shibesh Kumar Jas
    Kumar, Rajesh
    Bamba, Kazuharu
    PHYSICS OF THE DARK UNIVERSE, 2023, 40
  • [14] The cosmological evolution of self-interacting dark matter
    Egana-Ugrinovic, Daniel
    Essig, Rouven
    Gift, Daniel
    LoVerde, Marilena
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (05):
  • [15] Cosmological constraints on Lorentz violation in electrodynamics
    Kostelecky, VA
    Mewes, M
    PHYSICAL REVIEW LETTERS, 2001, 87 (25) : 251304 - 1
  • [16] Cosmological evolution of interacting new holographic dark energy in non-flat universe
    Sharif, M.
    Jawad, Abdul
    EUROPEAN PHYSICAL JOURNAL C, 2012, 72 (08): : 1 - 9
  • [17] Cosmological evolution of interacting new holographic dark energy in non-flat universe
    M. Sharif
    Abdul Jawad
    The European Physical Journal C, 2012, 72
  • [18] Cosmological evolution of pilgrim dark energy
    M. Sharif
    M. Zubair
    Astrophysics and Space Science, 2014, 352 : 263 - 272
  • [19] Cosmological evolution of pilgrim dark energy
    Sharif, M.
    Zubair, M.
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 352 (01) : 263 - 272
  • [20] Cosmological evolution of α and μ and the dynamics of dark energy
    Avelino, P. P.
    PHYSICAL REVIEW D, 2008, 78 (04):