Deep long short-term memory based model for agricultural price forecasting

被引:0
|
作者
Ronit Jaiswal
Girish K. Jha
Rajeev Ranjan Kumar
Kapil Choudhary
机构
[1] ICAR-Indian Agricultural Statistics Research Institute,
[2] ICAR-Indian Agricultural Research Institute,undefined
来源
关键词
ARIMA; Deep learning; Long short-term memory; Price forecasting; Time-delay neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
Agricultural price forecasting is one of the research hotspots in time series forecasting due to its unique characteristics. In this paper, we developed a deep long short-term memory (DLSTM) based model for the accurate forecasting of a nonstationary and nonlinear agricultural prices series. DLSTM model is a type of deep neural network which is advantageous in capturing the nonlinear and volatile patterns by utilizing both the recurrent architecture and deep learning methodologies together. The study further compares the price forecasting ability of the developed DLSTM model with conventional time-delay neural network (TDNN) and ARIMA models using international monthly price series of maize and palm oil. The empirical results demonstrate the superiority of the developed DLSTM model over other models in terms of various forecasting evaluation criteria like root mean square error, mean absolute percentage error and mean absolute deviation. The DLSTM model also showed dominance over other models in predicting the directional change of those monthly price series. Moreover, the accuracy of the forecasts obtained by all the models is also evaluated using the Diebold–Mariano test and the Friedman test whose results validate that the DLSTM based model has a clear advantage over the other two models.
引用
收藏
页码:4661 / 4676
页数:15
相关论文
共 50 条
  • [31] Refining Short-Term Power Load Forecasting: An Optimized Model with Long Short-Term Memory Network
    Hu S.
    Cai W.
    Liu J.
    Shi H.
    Yu J.
    Journal of Computing and Information Technology, 2023, 31 (03) : 151 - 166
  • [32] Forecasting carbon price with attention mechanism and bidirectional long short-term memory network
    Qin, Chaoyong
    Qin, Dongling
    Jiang, Qiuxian
    Zhu, Bangzhu
    ENERGY, 2024, 299
  • [33] Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting
    Al Khafaf, Nameer
    Jalili, Mandi
    Sokolowski, Peter
    ENGINEERING APPLICATIONS OF NEURAL NETWORKSX, 2019, 1000 : 31 - 42
  • [34] Forecasting of the Stock Price Using Recurrent Neural Network - Long Short-term Memory
    Dobrovolny, Michal
    Soukal, Ivan
    Salamat, Ali
    Cierniak-Emerych, Anna
    Krejcar, Ondrej
    HRADEC ECONOMIC DAYS, VOL 11(1), 2021, 11 : 145 - 154
  • [35] Deep convolutional long short-term memory for forecasting wind speed and direction
    Puspita Sari A.
    Suzuki H.
    Kitajima T.
    Yasuno T.
    Arman Prasetya D.
    Rabi' A.
    SICE Journal of Control, Measurement, and System Integration, 2021, 14 (02) : 30 - 38
  • [36] Forecasting Water Demand With the Long Short-Term Memory Deep Learning Mode
    Xu, Junhua
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 17 (01)
  • [37] Electricity Load and Price Forecasting Using a Hybrid Method Based Bidirectional Long Short-Term Memory with Attention Mechanism Model
    Gomez, William
    Wang, Fu-Kwun
    Amogne, Zemenu Endalamaw
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [38] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [39] Short-Term Oil Price Forecasting based on State Space Model
    Li Weiqi
    Ma Linwei
    Dai Yaping
    Li Donghai
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 2530 - +
  • [40] Short-term load forecasting based on deep learning model
    Kim D.
    Jin-Jo H.
    Park J.-B.
    Roh J.H.
    Kim M.S.
    Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (09): : 1094 - 1099