An obstacle problem arising from American options pricing: regularity of solutions

被引:0
|
作者
Henrique Borrin
Diego Marcon
机构
[1] Universidade Federal do Rio Grande do Sul,Departamento de Matemática Pura e Aplicada
关键词
35K55; 35R11; 35R35; 35S10;
D O I
暂无
中图分类号
学科分类号
摘要
We analyse the obstacle problem for the nonlocal parabolic operator [graphic not available: see fulltext]where b∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in {\mathbb {R}}^n$$\end{document}, r∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in {\mathbb {R}}$$\end{document}, and [inline-graphic not available: see fulltext] is a nonlocal lower order diffusion operator with respect to the fractional Laplace operator (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^{s}$$\end{document}. This model appears in the study of American options pricing when the stochastic process governing the stock price is assumed to be a purely jump process. We study the existence and the uniqueness of solutions to the obstacle problem, and we prove optimal regularity of solutions in space, and almost optimal regularity in time.
引用
收藏
相关论文
共 50 条
  • [41] Pricing of American retail options
    Burton, Christina
    Heasley, McKay
    Humpherys, Jeffrey
    Li, Jialin
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 6882 - 6887
  • [42] Boundary regularity for p-harmonic functions and solutions of the obstacle problem on metric spaces
    Bjorn, Anders
    Bjorn, Jana
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (04) : 1211 - 1232
  • [43] C1, α Regularity for Solutions to the p-harmonic Thin Obstacle Problem
    Andersson, John
    Mikayelyan, Hayk
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (01) : 119 - 134
  • [44] Real Options Problem with Nonsmooth Obstacle
    Acharya, Subas
    Bensoussan, Alain
    Rachinskii, Dmitrii
    Rivera, Alejandro
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2021, 12 (04): : 1508 - 1552
  • [45] Obstacle problem for Arithmetic Asian options
    Monti, Laura
    Pascucci, Andrea
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (23-24) : 1443 - 1446
  • [46] Boundary regularity for a parabolic obstacle type problem
    Andersson, J.
    INTERFACES AND FREE BOUNDARIES, 2010, 12 (03) : 279 - 291
  • [47] Generic regularity of free boundaries for the obstacle problem
    Figalli, Alessio
    Ros-Oton, Xavier
    Serra, Joaquim
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2020, 132 (01): : 181 - 292
  • [48] Regularity of the free boundary in the biharmonic obstacle problem
    Aleksanyan, Gohar
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
  • [49] The regularity theory for the parabolic double obstacle problem
    Ki-Ahm Lee
    Jinwan Park
    Mathematische Annalen, 2021, 381 : 685 - 728
  • [50] Generic regularity of free boundaries for the obstacle problem
    Alessio Figalli
    Xavier Ros-Oton
    Joaquim Serra
    Publications mathématiques de l'IHÉS, 2020, 132 : 181 - 292