Generalized Navier-Stokes equations for active suspensions

被引:0
|
作者
J. Słomka
J. Dunkel
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
关键词
European Physical Journal Special Topic; Discrete Fourier Transform; Parameter Plane; Active Suspension; Real Positive Root;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss a minimal generalization of the incompressible Navier-Stokes equations to describe the complex steady-state dynamics of solvent flow in an active suspension. To account phenomenologically for the presence of an active component driving the ambient fluid flow, we postulate a generic nonlocal extension of the stress-tensor, conceptually similar to those recently introduced in granular flows. Stability and spectral properties of the resulting hydrodynamic model are studied both analytically and numerically for the two-dimensional (2D) case with periodic boundary conditions. Future generalizations of this theory could be useful for quantifying the shear properties of active suspensions.
引用
收藏
页码:1349 / 1358
页数:9
相关论文
共 50 条
  • [41] Compensated compactness principle and solvability of generalized Navier-Stokes equations
    Pastukhova S.E.
    Journal of Mathematical Sciences, 2011, 173 (6) : 769 - 802
  • [42] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [43] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [44] FLUCTUATIONS IN NAVIER-STOKES EQUATIONS
    PAPANICOLAOU, GC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A236 - A236
  • [45] TRANSFORMATION OF NAVIER-STOKES EQUATIONS
    ROGERS, DF
    GRANGER, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1331 - &
  • [46] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [47] NAVIER-STOKES EQUATIONS PARADOX
    Ramm, Alexander G.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 41 - 45
  • [48] STOCHASTIC NAVIER-STOKES EQUATIONS
    CAPINSKI, M
    CUTLAND, N
    ACTA APPLICANDAE MATHEMATICAE, 1991, 25 (01) : 59 - 85
  • [49] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [50] On the Navier-Stokes equations on surfaces
    Pruess, Jan
    Simonett, Gieri
    Wilke, Mathias
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3153 - 3179