Thermodynamics of the quantum Schwarzschild black hole

被引:4
|
作者
Balart, Leonardo [1 ]
Panotopoulos, Grigoris [1 ]
Rincon, Angel [2 ]
机构
[1] Univ La Frontera, Dept Ciencias Fis, Casilla 54-D, Temuco 4811186, Chile
[2] Univ Alicante, Dept Fis Aplicada, Campus San Vicente Raspeig, Alicante 03690, Spain
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 05期
关键词
QUASI-LOCAL ENERGY; RELATIVISTIC THEORY; INTERIOR SOLUTIONS; MACHS PRINCIPLE; HORIZON; STARS; WEAK;
D O I
10.1140/epjp/s13360-024-05216-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss some thermodynamic properties as well as the stability of a quantum Schwarzschild black hole, comparing the results with those obtained within a bumblebee gravity model. In particular, the Hawking temperature, T H \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{{\text{H}}}$$\end{document} , the entropy, S, the heat capacity, C, and the Gibbs free energy, G, are computed for both cases. In addition to that, we compute the Brown-York quasilocal energy and compare the solution with the Schwarzschild case. We find that in both cases (quantum Schwarzschild and bumblebee gravity model) the temperature, the entropy, and the heat capacity show the same functional form, under the replacement lambda 2 -> & ell; \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda <^>2 \rightarrow \ell$$\end{document} and vice versa. Specifically, the temperature is found to be lower compared to the classical (Schwarzschild) solution; whereas, the entropy is computed to be larger. Moreover, the heat capacity becomes more negative. Notably, a distinct contrast emerges in obtaining the Gibbs free energy between these two cases, and this distinction appears to stem from the ADM mass.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Quantum Schwarzschild Black Hole Optical Aspects
    El Balali, Anas
    GRAVITATION & COSMOLOGY, 2024, 30 (01): : 71 - 84
  • [32] On quantum statistical mechanics of a Schwarzschild black hole
    Krasnov, KV
    GENERAL RELATIVITY AND GRAVITATION, 1998, 30 (01) : 53 - 68
  • [33] An effective model for the quantum Schwarzschild black hole
    Alonso-Bardaji, Asier
    Brizuela, David
    Vera, Raul
    PHYSICS LETTERS B, 2022, 829
  • [34] A quantum model of Schwarzschild black hole evaporation
    Cruz, J
    Mikovic, A
    NavarroSalas, J
    PHYSICS LETTERS B, 1997, 395 (3-4) : 184 - 190
  • [35] Bardeen regular black hole as a quantum-corrected Schwarzschild black hole
    Maluf, R., V
    Neves, Juliano C. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (03):
  • [36] A Study on the Effect of Quintessence on the Thermodynamics of Perturbed Schwarzschild Black Hole
    Israr Ali Khan
    Shah Qasim Jan
    Amir Sultan Khan
    Wali Khan Mashwani
    Poom Kumam
    Zahir Shah
    Muhammad Sajjad Ali Khan
    Arabian Journal for Science and Engineering, 2022, 47 : 7807 - 7815
  • [37] Thermodynamics of a Schwarzschild Black Hole With a Cosmic String or a Global Monopole
    荆继良
    余洪伟
    王永久
    ChineseScienceBulletin, 1994, (02) : 104 - 106
  • [38] A Study on the Effect of Quintessence on the Thermodynamics of Perturbed Schwarzschild Black Hole
    Khan, Israr Ali
    Jan, Shah Qasim
    Khan, Amir Sultan
    Mashwani, Wali Khan
    Kumam, Poom
    Shah, Zahir
    Khan, Muhammad Sajjad Ali
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (06) : 7807 - 7815
  • [39] Thermodynamics of the Schwarzschild-AdS Black Hole with a Minimal Length
    Miao, Yan-Gang
    Wu, Yu-Mei
    ADVANCES IN HIGH ENERGY PHYSICS, 2017, 2017
  • [40] THERMODYNAMICS OF A SCHWARZSCHILD BLACK HOLE IN PHANTOM COSMOLOGY WITH ENTROPY CORRECTIONS
    Jamil, Mubasher
    Momeni, D.
    Bamba, Kazuharu
    Myrzakulov, Ratbay
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2012, 21 (07):