A real-time object detection method for underwater complex environments based on FasterNet-YOLOv7

被引:0
|
作者
Qing Yang
Huijuan Meng
Yuchen Gao
Dexin Gao
机构
[1] Qingdao University of Science and Technology,School of Information Science and Technology
[2] Qingdao University of Science and Technology,School of Automation and Electronic Engineering
来源
关键词
Underwater object detection; UWCNN; FasterNet-YOLOv7; Focal-EIOU loss; Complex environments;
D O I
暂无
中图分类号
学科分类号
摘要
A FasterNet-You Only Look Once (YOLO)v7 algorithm is proposed for underwater complex environments with blurred images and complex backgrounds, which lead to difficulties in object target feature extraction and target miss detection, and to improve the fusion capability and real-time detection of small underwater targets. Before training the improved model, the original images acquired by the underwater robot are preprocessed in combination with the Underwater Image Enhancement Convolutional Neural Network (UWCNN) algorithm, which helps to identify targets accurately in the complex marine environment. First, to extract spatial features more efficiently, the algorithm uses Faster Neural Networks (FasterNet-L) as the backbone network model as well as an improved loss function, Focal Efficient Intersection over Union Loss (Focal-EIOU Loss), to reduce redundant computations and memory access, and the regression process focuses on high-quality anchor frames. Second, for the problem of poor robustness of small targets in an underwater environment, the algorithm uses the Cross-modal Transformer Attention (CoTAttention) lightweight attention mechanism to improve the original algorithm so that the detection targets are enhanced in channel and spatial dimensions. Finally, the experimental results show that the mean average precision (mAP) value of this paper's algorithm reaches 91.8% and the actual detection video frame rate reaches 83.21. FasterNet-YOLOv7 has higher detection accuracy compared with Faster Region-Based Convolutional Neural Network (Faster RCNN), Single Shot MultiBox Detection (SSD), YOLOv4, YOLOv5, and YOLOv7 models and is more accurate.
引用
收藏
相关论文
共 50 条
  • [41] An Improved YOLOv8-Based Method for Real-Time Detection of Harmful Tea Leaves in Complex Backgrounds
    Leng, Xin
    Chen, Jiakai
    Huang, Jianping
    Zhang, Lei
    Li, Zongxuan
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024,
  • [42] Real-time detection and counting of wheat ears based on improved YOLOv7
    Li, Zanpeng
    Zhu, Yanjun
    Sui, Shunshun
    Zhao, Yonghao
    Liu, Ping
    Li, Xiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 218
  • [43] Improved Underwater Object Detection Algorithm of YOLOv7
    Liang, Xiuman
    Li, Ran
    Yu, Haifeng
    Liu, Zhendong
    Computer Engineering and Applications, 2024, 60 (06) : 89 - 99
  • [44] Real-time collision detection and response for complex environments
    Geiger, B
    COMPUTER GRAPHICS INTERNATIONAL 2000, PROCEEDINGS, 2000, : 105 - 113
  • [45] Multi-scale ResNet for real-time underwater object detection
    Pan, Tien-Szu
    Huang, Huang-Chu
    Lee, Jen-Chun
    Chen, Chung-Hsien
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (05) : 941 - 949
  • [46] Multi-scale ResNet for real-time underwater object detection
    Tien-Szu Pan
    Huang-Chu Huang
    Jen-Chun Lee
    Chung-Hsien Chen
    Signal, Image and Video Processing, 2021, 15 : 941 - 949
  • [47] A Real-Time Fabric Defect Detection Method Based on Improved YOLOv8
    Jin, Yanxia
    Liu, Xinyu
    Nan, Keliang
    Wang, Songsong
    Wang, Ting
    Zhang, Zhuangwei
    Zhang, Xiaozhu
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [48] Real-Time Detection Method for Small Traffic Signs Based on Yolov3
    Zhang, Huibing
    Qin, Longfei
    Li, Jun
    Guo, Yunchuan
    Zhou, Ya
    Zhang, Jingwei
    Xu, Zhi
    IEEE ACCESS, 2020, 8 : 64145 - 64156
  • [49] A real-time and efficient surface defect detection method based on YOLOv4
    Jiansheng Liu
    Guolong Cui
    Chengdi Xiao
    Journal of Real-Time Image Processing, 2023, 20
  • [50] A Real-Time Vehicle Logo Detection Method Based on Improved YOLOv2
    Yin, Kangning
    Hou, Shaoqi
    Li, Ye
    Li, Chao
    Yin, Guangqiang
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT I, 2020, 12384 : 666 - 677