Triebel-Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces

被引:0
|
作者
Kôzô Yabuta
机构
[1] Kwansei Gakuin University,Research Center for Mathematical Sciences
关键词
Marcinkiewicz integral; Littlewood-Paley operator; Triebel-Lizorkin space; rough kernel; 42B20; 42B25; 47G10;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we consider the boundedness of Marcinkiewicz integral operator µO,h,f along a surface Γ = {x = φ(|y|)y/|y|)} on the Triebel-Lizorkin space Fp,qα (ℝn) for Ω belonging to H1(Sn-1) and some class WFα(Sn-1), which relates to Grafakos-Stefanov class. Some previous results are extended and improved.
引用
收藏
页码:418 / 446
页数:28
相关论文
共 50 条
  • [21] BOUNDEDNESS OF SINGULAR INTEGRALS AND MAXIMAL SINGULAR INTEGRALS ON TRIEBEL-LIZORKIN SPACES
    Zhang, Chunjie
    Chen, Jiecheng
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (02) : 157 - 168
  • [22] On the boundedness of rough oscillatory singular integrals on Triebel-Lizorkin spaces
    Hussain Al-Qassem
    Leslie Cheng
    Yi Biao Pan
    Acta Mathematica Sinica, English Series, 2011, 27 : 1881 - 1898
  • [23] On the Boundedness of Rough Oscillatory Singular Integrals on Triebel-Lizorkin Spaces
    Al-Qassem, Hussain
    Cheng, Leslie
    Pan, Yi Biao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (10) : 1881 - 1898
  • [24] ROUGH SINGULAR INTEGRALS ASSOCIATED TO SURFACES OF REVOLUTION ON TRIEBEL-LIZORKIN SPACES
    Liu, Feng
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (05) : 1617 - 1653
  • [25] Rough singular integrals on Triebel-Lizorkin space and Besov space
    Chen, Yanping
    Ding, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (02) : 493 - 501
  • [26] Boundedness of Fractional Integrals with a Rough Kernel on the Product Triebel-Lizorkin Spaces
    ZHANG HUI-HUI
    YU XIAO
    XIANG ZHONG-QI
    Ji You-qing
    Communications in Mathematical Research, 2017, 33 (03) : 259 - 273
  • [27] Boundedness of an oscillating multiplier on Triebel-Lizorkin spaces
    Cao, Wei
    Chen, Jie Cheng
    Fan, Da Shan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (11) : 2071 - 2084
  • [28] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    Kôzô Yabuta
    Science China Mathematics, 2020, 63 : 907 - 936
  • [29] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    K?z? Yabuta
    ScienceChina(Mathematics), 2020, 63 (05) : 907 - 936
  • [30] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Liu, Feng
    Xue, Qingying
    Yabuta, Kozo
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (05) : 907 - 936