Iterative optimal solutions of linear matrix equations for hyperspectral and multispectral image fusing

被引:0
|
作者
Frank Uhlig
An-Bao Xu
机构
[1] Auburn University,Department of Mathematics and Statistics
[2] Wenzhou University,College of Mathematics and Physics
来源
Calcolo | 2023年 / 60卷
关键词
Linear matrix equation; Multiband image fusion; Sylvester equation; Tikhonov regularization; Norm-constrained optimization; Structured matrix algorithm; 65F10; 68U10;
D O I
暂无
中图分类号
学科分类号
摘要
For a linear matrix function f in X∈Rm×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \in {\mathbb {R}}^{m\times n}$$\end{document} we consider inhomogeneous linear matrix equations f(X)=E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(X) = E$$\end{document} for E≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \ne 0$$\end{document} that have or do not have solutions. For such systems we compute optimal norm constrained solutions iteratively using the Conjugate Gradient and Lanczos’ methods in combination with the More–Sorensen optimizer. We build codes for ten linear matrix equations, of Sylvester, Lyapunov, Stein and structured types and their T-versions, that differ only in two five times repeated equation specific code lines. Numerical experiments with linear matrix equations are performed that illustrate universality and efficiency of our method for dense and small data matrices, as well as for sparse and certain structured input matrices. Specifically we show how to adapt our universal method for sparse inputs and for structured data such as encountered when fusing image data sets via a Sylvester equation algorithm to obtain an image of higher resolution.
引用
收藏
相关论文
共 50 条
  • [41] NONUNIQUE SOLUTIONS OF LINEAR EQUATIONS WITH NONSINGULAR MATRIX
    LARSSON, RD
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09): : 1062 - &
  • [42] EXACT-SOLUTIONS FOR LINEAR MATRIX EQUATIONS
    OKEKE, CC
    MATRIX AND TENSOR QUARTERLY, 1979, 30 (02): : 51 - 54
  • [43] The explicit solutions and solvability of linear matrix equations
    Huang, LP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 311 (1-3) : 195 - 199
  • [44] An Iterative Algorithm for the Generalized Center Symmetric Solutions of a Class of Linear Matrix Equation and Its Optimal Approximation
    Liu, Jie
    Li, Qingchun
    Advances in Intelligent Systems and Computing, 2013, 212 : 155 - 161
  • [45] Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization
    Benhalouche, Fatima Zohra
    Karoui, Moussa Sofiane
    Deville, Yannick
    Ouamri, Abdelaziz
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [47] HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION VIA NONNEGATIVE MATRIX FACTORIZATION AND DEEP PRIOR REGULARIZATION
    Lin, Baihong
    Zhang, Yiqi
    Lin, Zengrong
    Wang, Xiaoqing
    Huang, Haifeng
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1440 - 1443
  • [48] Iterative solutions for general coupled matrix equations with real coefficients
    Xie, Li
    Yang, Huizhong
    Liu, Yanjun
    Ding, Feng
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 669 - 674
  • [49] Hyperspectral Multispectral Image Fusion via Fast Matrix Truncated Singular Value Decomposition
    Lin, Hong
    Long, Jian
    Peng, Yuanxi
    Zhou, Tong
    REMOTE SENSING, 2023, 15 (01)
  • [50] Gradient-based iterative solutions for general matrix equations
    Xie, Li
    Yang, Huizhong
    Ding, Jie
    Ding, Feng
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 500 - 505