Iterative optimal solutions of linear matrix equations for hyperspectral and multispectral image fusing

被引:0
|
作者
Frank Uhlig
An-Bao Xu
机构
[1] Auburn University,Department of Mathematics and Statistics
[2] Wenzhou University,College of Mathematics and Physics
来源
Calcolo | 2023年 / 60卷
关键词
Linear matrix equation; Multiband image fusion; Sylvester equation; Tikhonov regularization; Norm-constrained optimization; Structured matrix algorithm; 65F10; 68U10;
D O I
暂无
中图分类号
学科分类号
摘要
For a linear matrix function f in X∈Rm×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \in {\mathbb {R}}^{m\times n}$$\end{document} we consider inhomogeneous linear matrix equations f(X)=E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(X) = E$$\end{document} for E≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \ne 0$$\end{document} that have or do not have solutions. For such systems we compute optimal norm constrained solutions iteratively using the Conjugate Gradient and Lanczos’ methods in combination with the More–Sorensen optimizer. We build codes for ten linear matrix equations, of Sylvester, Lyapunov, Stein and structured types and their T-versions, that differ only in two five times repeated equation specific code lines. Numerical experiments with linear matrix equations are performed that illustrate universality and efficiency of our method for dense and small data matrices, as well as for sparse and certain structured input matrices. Specifically we show how to adapt our universal method for sparse inputs and for structured data such as encountered when fusing image data sets via a Sylvester equation algorithm to obtain an image of higher resolution.
引用
收藏
相关论文
共 50 条
  • [1] Iterative optimal solutions of linear matrix equations for hyperspectral and multispectral image fusing
    Uhlig, Frank
    Xu, An-Bao
    CALCOLO, 2023, 60 (02)
  • [2] Hyperspectral image classification by fusing sparse representation and simple linear iterative clustering
    Tang, Xiaoqing
    Chen, Junlong
    Liu, Yazhou
    Sun, Quansen
    JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [4] Gradient based iterative solutions for general linear matrix equations
    Xie, Li
    Ding, Jie
    Ding, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (07) : 1441 - 1448
  • [5] An Iterative method for the Symmetric Solutions of the Linear Matrix Equations with Several Variables
    Zhang, Kaiyuan
    Zheng, Fengqin
    Zhou, Bingchang
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 240 - 242
  • [6] The optimal convergence factor of the gradient based iterative algorithm for linear matrix equations
    Wang, Xiang
    Liao, Dan
    FILOMAT, 2012, 26 (03) : 607 - 613
  • [7] Lipschitzian solutions to linear iterative equations
    Baron, Karol
    Morawiec, Janusz
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 89 (03): : 277 - 285
  • [8] An iterative method for the least squares solutions of the linear matrix equations with some constraint
    Cai, Jing
    Chen, Guoliang
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (03) : 634 - 649
  • [9] A Piecewise Linear Strategy of Target Detection for Multispectral/Hyperspectral Image
    Geng, Xiurui
    Yang, Weitun
    Ji, Luyan
    Ling, Cheng
    Yang, Suixin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (03) : 951 - 961
  • [10] Superfast Iterative Solvers for Linear Matrix Equations
    E. A. Mikrin
    N. E. Zubov
    D. E. Efanov
    V. N. Ryabchenko
    Doklady Mathematics, 2018, 98 : 444 - 447