Neural networks in Fréchet spaces

被引:0
|
作者
Fred Espen Benth
Nils Detering
Luca Galimberti
机构
[1] University of Oslo,Department of Mathematics
[2] University of California at Santa Barbara,Department of Statistics and Applied Probability
[3] Norwegian University of Science and Technology,Department of Mathematical Sciences
来源
Annals of Mathematics and Artificial Intelligence | 2023年 / 91卷
关键词
Neural networks; Universal approximation; Fréchet space; Activation function; 68T07; 46T99;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a neural network architecture in infinite dimensional spaces for which we can show the universal approximation property. Indeed, we derive approximation results for continuous functions from a Fréchet space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {X}$\end{document} into a Banach space Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {Y}$\end{document}. The approximation results are generalising the well known universal approximation theorem for continuous functions from ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{n}$\end{document} to ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}$\end{document}, where approximation is done with (multilayer) neural networks Cybenko (1989) Math. Cont. Signals Syst.2, 303–314 and Hornik et al. (1989) Neural Netw., 2, 359–366 and Funahashi (1989) Neural Netw., 2, 183–192 and Leshno (1993) Neural Netw., 6, 861–867. Our infinite dimensional networks are constructed using activation functions being nonlinear operators and affine transforms. Several examples are given of such activation functions. We show furthermore that our neural networks on infinite dimensional spaces can be projected down to finite dimensional subspaces with any desirable accuracy, thus obtaining approximating networks that are easy to implement and allow for fast computation and fitting. The resulting neural network architecture is therefore applicable for prediction tasks based on functional data.
引用
收藏
页码:75 / 103
页数:28
相关论文
共 50 条
  • [21] Inverse mapping theorem in Fréchet spaces
    Milen Ivanov
    Nadia Zlateva
    Journal of Optimization Theory and Applications, 2021, 190 : 300 - 315
  • [22] Fréchet spaces of general Dirichlet series
    Andreas Defant
    Tomás Fernández Vidal
    Ingo Schoolmann
    Pablo Sevilla-Peris
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [23] A Global Diffeomorphism Theorem for Fréchet Spaces
    Eftekharinasab K.
    Journal of Mathematical Sciences, 2020, 247 (2) : 276 - 290
  • [24] Fréchet spaces, ω-Rudin property and Smyth power spaces
    Xu, Xiaoquan
    Miao, Hualin
    Li, Qingguo
    TOPOLOGY AND ITS APPLICATIONS, 2025, 363
  • [25] On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals
    Kuryliak A.O.
    Sheremeta M.M.
    Journal of Mathematical Sciences, 2023, 270 (2) : 280 - 293
  • [26] On the absence of stability of bases in some Fréchet spaces
    A. Goncharov
    Analysis Mathematica, 2020, 46 : 761 - 768
  • [27] Non-quasianalytic curves in Fréchet spaces
    Jordi Juan-Huguet
    Monatshefte für Mathematik, 2011, 164 : 427 - 437
  • [28] Real analytic curves in Fréchet spaces and their duals
    José Bonet
    Pawel Domański
    Monatshefte für Mathematik, 1998, 126 : 13 - 36
  • [29] The compact approximation property for spaces of holomorphic mappings on Fréchet spaces
    E. Çalışkan
    P. Rueda
    Revista Matemática Complutense, 2021, 34 : 185 - 201
  • [30] A problem on the structure of Fréchet spaces; [Un problema sobre la estructura de espacios de Fréchet]
    Bonet J.
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2010, 104 (2) : 427 - 434