Bicompact Finite-Difference Scheme for Maxwell’s Equations in Layered Media

被引:0
|
作者
A. A. Belov
Zh. O. Dombrovskaya
机构
[1] Faculty of Physics,
[2] Lomonosov Moscow State University,undefined
[3] RUDN University,undefined
来源
Doklady Mathematics | 2020年 / 101卷
关键词
Maxwell’s equations; bicompact schemes; layered media; conjugation conditions; material dispersion;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:185 / 188
页数:3
相关论文
共 50 条
  • [31] A robust and efficient subgridding algorithm for finite-difference time-domain simulations of Maxwell's equations
    Vaccari, A
    Pontalti, R
    Malacarne, C
    Cristoforetti, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) : 117 - 139
  • [32] A Practical Fourth Order Finite-Difference Time-Domain Algorithm for the Solution of Maxwell's Equations
    Thomson, Antonio P.
    Elsherbeni, Atef Z.
    Hadi, Mohammed
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2020, 35 (11): : 1422 - 1423
  • [33] Finite-difference time-domain algorithm for solving Maxwell's equations in rotationally symmetric geometries
    Chen, YC
    Mittra, R
    Harms, P
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1996, 44 (06) : 832 - 839
  • [34] A Practical Fourth Order Finite-Difference Time-Domain Algorithm for the Solution of Maxwell's Equations
    Thomson, Antonio P.
    Elsherbeni, Atef Z.
    Hadi, Mohammed
    2020 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (2020 ACES-MONTEREY), 2020,
  • [35] JOINT FINITE-DIFFERENCE SOLUTION OF THE DALAMBER AND MAXWELL'S EQUATIONS. ONE-DIMENSIONAL CASE
    Golovashkin, D. L.
    Yablokova, L. V.
    COMPUTER OPTICS, 2012, 36 (04) : 527 - 533
  • [36] A novel implementation of modified Maxwell's equations in the periodic finite-difference time-domain method
    Zheng, G.
    Kishk, A. A.
    Glisson, A. W.
    Yakovlev, A. B.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2006, 59 : 85 - 100
  • [37] New scheme for introducing an oblique incidence plane wave to layered media in finite-difference time-domain
    Jiang Yan-Nan
    Ge De-Biao
    ACTA PHYSICA SINICA, 2008, 57 (10) : 6283 - 6289
  • [38] A FINITE-DIFFERENCE SCHEME FOR THE SOLUTION OF THE STEADY NAVIER-STOKES EQUATIONS
    MEI, R
    PLOTKIN, A
    COMPUTERS & FLUIDS, 1986, 14 (03) : 239 - 251
  • [39] The statement of boundary conditions for a finite-difference scheme of shallow water equations
    Berestov, A.L.
    Meteorologiya i Gidrologiya, 1994, (12): : 63 - 71
  • [40] Numerical solutions of coupled Burgers' equations by an implicit finite-difference scheme
    Srivastava, Vineet K.
    Singh, Sarita
    Awasthi, Mukesh K.
    AIP ADVANCES, 2013, 3 (08):