Better Distance Labeling for Unweighted Planar Graphs

被引:0
|
作者
Paweł Gawrychowski
Przemysław Uznański
机构
[1] University of Wrocław,
来源
Algorithmica | 2023年 / 85卷
关键词
Distance labeling; Planar graphs; Voronoi diagrams;
D O I
暂无
中图分类号
学科分类号
摘要
A distance labeling scheme is an assignment of labels, that is, binary strings, to all nodes of a graph, so that the distance between any two nodes can be computed from their labels without any additional information about the graph. The goal is to minimize the maximum length of a label as a function of the number of nodes. A major open problem in this area is to determine the complexity of distance labeling in unweighted planar (undirected) graphs. It is known that, in such a graph on n nodes, some labels must consist of Ω(n1/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n^{1/3})$$\end{document} bits, but the best known labeling scheme constructs labels of length O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n}\log n)$$\end{document} (Gavoille, Peleg, Pérennes, and Raz in J Algorithms 53:85–112, 2004). For weighted planar graphs with edges of length polynomial in n, we know that labels of length Ω(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n}\log n)$$\end{document} are necessary (Abboud and Dahlgaard in FOCS, 2016). Surprisingly, we do not know if distance labeling for weighted planar graphs with edges of length polynomial in n is harder than distance labeling for unweighted planar graphs. We prove that this is indeed the case by designing a distance labeling scheme for unweighted planar graphs on n nodes with labels consisting of O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document} bits with a simple and (in our opinion) elegant method. We also show how to extend this to graphs with small weight and (unweighted) graphs with bounded genus. We augment the construction for unweighted planar graphs with a mechanism (based on Voronoi diagrams) that allows us to compute the distance between two nodes in only polylogarithmic time while increasing the length to O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n\log n})$$\end{document}. The previous scheme required Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n})$$\end{document} time to answer a query in this model.
引用
收藏
页码:1805 / 1823
页数:18
相关论文
共 50 条
  • [21] LOCAL DISTANCE IRREGULAR LABELING OF GRAPHS
    Kristiana, A. I.
    Alfarisi, R.
    Dafik
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (01): : 1 - 10
  • [22] Labeling graphs with two distance constraints
    Chang, Hsun-Wen
    Chou, Huang-Wei
    Kuo, David
    Lin, Chun-Liang
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5645 - 5655
  • [23] Distance antimagic labeling of circulant graphs
    Sy, Syafrizal
    Simanjuntak, Rinovia
    Nadeak, Tamaro
    Sugeng, Kiki Ariyanti
    Tulus, Tulus
    AIMS MATHEMATICS, 2024, 9 (08): : 21177 - 21188
  • [24] Distance Two Labeling of Halin Graphs
    Wang, Yiqiao
    ARS COMBINATORIA, 2014, 114 : 331 - 343
  • [25] Distance labeling in graphs (extended abstract)
    Gavoille, C
    Peleg, D
    Pérennes, S
    Raz, R
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 210 - 219
  • [26] ON DISTANCE IRREGULAR LABELING OF DISCONNECTED GRAPHS
    Susanto, Faisal
    Wijaya, Kristiana
    Purnama, Prasanti Mia
    Slamin
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2022, 46 (04): : 507 - 523
  • [27] RECENT ADVANCEMENTS IN PRIME LABELING AND PRIME DISTANCE LABELING OF GRAPHS
    Dayal, Ram
    Parthiban, A.
    Majumder, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 96 - 101
  • [28] Improved Distance Queries in Planar Graphs
    Nussbaum, Yahav
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 642 - 653
  • [29] Distance oracles for unweighted graphs: Breaking the quadratic barrier with constant additive error
    Baswana, Surender
    Gaur, Akshay
    Sen, Sandeep
    Upadhyay, Jayant
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 609 - +
  • [30] Efficient Batched Distance, Closeness and Betweenness Centrality Computation in Unweighted and Weighted Graphs
    Manuel Then
    Stephan Günnemann
    Alfons Kemper
    Thomas Neumann
    Datenbank-Spektrum, 2017, 17 (2) : 169 - 182