Eisenstein series for SL(2)

被引:0
|
作者
Stephen S. Kudla
TongHai Yang
机构
[1] University of Toronto,Department of Mathematics
[2] University of Wisconsin Madison,Department of Mathematics
来源
Science China Mathematics | 2010年 / 53卷
关键词
Eisenstein series; local Whittaker functions; Weil representation; derivative; 11G15; 11F41; 14K22;
D O I
暂无
中图分类号
学科分类号
摘要
This paper gives explicit formulas for the Fourier expansion of general Eisenstein series and local Whittaker functions over SL2. They are used to compute both the value and derivatives of these functions at critical points.
引用
收藏
页码:2275 / 2316
页数:41
相关论文
共 50 条
  • [31] IDENTITIES ABOUT LEVEL 2 EISENSTEIN SERIES
    Xu, Ce
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (01): : 63 - 81
  • [32] Formal Deformations and Principal Series Representations of SL(2, ℝ) and SL(2, ℂ)
    Benjamin Cahen
    Czechoslovak Mathematical Journal, 2020, 70 : 935 - 951
  • [33] Geometric Eisenstein series
    Braverman, A
    Gaitsgory, D
    INVENTIONES MATHEMATICAE, 2002, 150 (02) : 287 - 384
  • [34] Sixteen Eisenstein series
    Shaun Cooper
    Heung Yeung Lam
    The Ramanujan Journal, 2009, 18 : 33 - 59
  • [35] TRUNCATION OF EISENSTEIN SERIES
    Lapid, Erez
    Ouellette, Keith
    PACIFIC JOURNAL OF MATHEMATICS, 2012, 260 (02) : 665 - 685
  • [36] The connection to eisenstein series
    Rapoport, Michael
    Wedhorn, Torsten
    ASTERISQUE, 2007, (312) : 191 - 208
  • [37] ON HERMITIAN EISENSTEIN SERIES
    NAGAOKA, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1994, 70 (04) : 115 - 117
  • [38] Geometric Eisenstein series
    A. Braverman
    D. Gaitsgory
    Inventiones mathematicae, 2002, 150 : 287 - 384
  • [39] EISENSTEIN SERIES AND TRANSCENDENCE
    BERTRAND, D
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1976, 104 (03): : 309 - 321
  • [40] Biquadratic Eisenstein Series
    D. S. Kataev
    Journal of Mathematical Sciences, 2003, 116 (1) : 2993 - 3009