Higher-Order Noether’s Theorem for Isoperimetric Variational Problems

被引:0
|
作者
Gastão Frederico
Matheus Jatkoske Lazo
Maria Nilde Barreto
José Vanterler da Costa Sousa
机构
[1] Federal University of Ceará,Department of Science and Technology
[2] University of Cape Verde,Institute of Mathematics, Statistics and Physics
[3] Federal University of Rio Grande,Center for Mathematics Computing and Cognition
[4] Federal University of ABC,undefined
关键词
Higher-order Noether’s theorem; Variational isoperimetric problems; DuBois-Reymond conditions; Euler–Lagrange equations; 49S05; 70H03; 49K15;
D O I
暂无
中图分类号
学科分类号
摘要
In this present paper, we concern a non-smooth higher-order extension of Noether’s symmetry theorem for variational isoperimetric problems with delayed arguments. The result is proven to be valid in the class of Lipschitz functions, as long as the delayed higher-order Euler–Lagrange extremals are restricted to those that satisfy the delayed higher-order DuBois-Reymond necessary optimality condition. The important case of delayed isoperimetric optimal control problems is considered as well.
引用
收藏
页码:541 / 568
页数:27
相关论文
共 50 条
  • [1] Higher-Order Noether's Theorem for Isoperimetric Variational Problems
    Frederico, Gasto
    Lazo, Matheus Jatkoske
    Barreto, Maria Nilde
    da Costa Sousa, Jose Vanterler
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 199 (02) : 541 - 568
  • [2] Noether's theorem for fractional variational problems of variable order
    Odzijewicz, Tatiana
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 691 - 701
  • [3] NOETHER THEOREM IN HIGHER-ORDER LAGRANGIAN MECHANICS
    MIRON, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (07) : 1123 - 1146
  • [4] NOETHER CURRENTS FOR HIGHER-ORDER VARIATIONAL PROBLEMS OF HERGLOTZ TYPE WITH TIME DELAY
    Santos, Simao P. S.
    Martins, Natalia
    Torres, Delfim F. M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (01): : 91 - 102
  • [5] Noether's Second Theorem for Variable Order Fractional Variational Problems
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    ADVANCES IN MODELLING AND CONTROL OF NON-INTEGER ORDER SYSTEMS, 2015, 320 : 37 - 46
  • [6] Invariant Higher-Order Variational Problems
    François Gay-Balmaz
    Darryl D. Holm
    David M. Meier
    Tudor S. Ratiu
    François-Xavier Vialard
    Communications in Mathematical Physics, 2012, 309 : 413 - 458
  • [7] Invariant Higher-Order Variational Problems
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (02) : 413 - 458
  • [8] Invariant Higher-Order Variational Problems II
    François Gay-Balmaz
    Darryl D. Holm
    David M. Meier
    Tudor S. Ratiu
    François-Xavier Vialard
    Journal of Nonlinear Science, 2012, 22 : 553 - 597
  • [9] Invariant Higher-Order Variational Problems II
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (04) : 553 - 597
  • [10] Higher-order generalized invexity in variational problems
    Padhan, S. K.
    Nahak, C.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (11) : 1334 - 1341