Noether's theorem for fractional variational problems of variable order

被引:60
|
作者
Odzijewicz, Tatiana [1 ]
Malinowska, Agnieszka B. [2 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2013年 / 11卷 / 06期
关键词
variable order fractional integrals; variable order fractional derivatives; fractional variational analysis; Euler-Lagrange equations; Noether's theorem; FORMULATION; MECHANICS; CALCULUS; DYNAMICS; ENERGY;
D O I
10.2478/s11534-013-0208-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a necessary optimality condition of Euler-Lagrange type for fractional variational problems with derivatives of incommensurate variable order. This allows us to state a version of Noether's theorem without transformation of the independent (time) variable. Considered derivatives of variable order are defined in the sense of Caputo.
引用
收藏
页码:691 / 701
页数:11
相关论文
共 50 条
  • [1] Noether's Second Theorem for Variable Order Fractional Variational Problems
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    ADVANCES IN MODELLING AND CONTROL OF NON-INTEGER ORDER SYSTEMS, 2015, 320 : 37 - 46
  • [2] Noether's theorem for variational problems of Herglotz type with real and complex order fractional derivatives
    Atanackovic, Teodor M.
    Janev, Marko
    Pilipovic, Stevan
    ACTA MECHANICA, 2021, 232 (03) : 1131 - 1146
  • [3] Noether’s theorem for fractional Birkhoffian systems of variable order
    Bin Yan
    Yi Zhang
    Acta Mechanica, 2016, 227 : 2439 - 2449
  • [4] Noether’s theorem for variational problems of Herglotz type with real and complex order fractional derivatives
    Teodor M. Atanacković
    Marko Janev
    Stevan Pilipović
    Acta Mechanica, 2021, 232 : 1131 - 1146
  • [5] Noether's theorem for fractional Birkhoffian systems of variable order
    Yan, Bin
    Zhang, Yi
    ACTA MECHANICA, 2016, 227 (09) : 2439 - 2449
  • [6] Higher-Order Noether's Theorem for Isoperimetric Variational Problems
    Frederico, Gasto
    Lazo, Matheus Jatkoske
    Barreto, Maria Nilde
    da Costa Sousa, Jose Vanterler
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 199 (02) : 541 - 568
  • [7] Higher-Order Noether’s Theorem for Isoperimetric Variational Problems
    Gastão Frederico
    Matheus Jatkoske Lazo
    Maria Nilde Barreto
    José Vanterler da Costa Sousa
    Journal of Optimization Theory and Applications, 2023, 199 (2) : 541 - 568
  • [8] Variational Problems with Partial Fractional Derivative: Optimal Conditions and Noether's Theorem
    Jiang, Jun
    Feng, Yuqiang
    Li, Shougui
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [9] NOETHER'S THEOREM FOR HERGLOTZ TYPE VARIATIONAL PROBLEMS UTILIZING COMPLEX FRACTIONAL DERIVATIVES
    Janev, Marko
    Atanackovic, Teodor M.
    Pilipovic, Stevan
    THEORETICAL AND APPLIED MECHANICS, 2021, 48 (02) : 127 - 142
  • [10] Noether-type theorem for fractional variational problems depending on fractional derivatives of functions
    Lazo, M. J.
    Frederico, G. S. F.
    Carvalho-Neto, P. M.
    APPLICABLE ANALYSIS, 2021, 100 (08) : 1727 - 1743