On genus of division algebras

被引:0
|
作者
Sergey V. Tikhonov
机构
[1] Belarusian State University,
来源
manuscripta mathematica | 2021年 / 164卷
关键词
Primary 16K20; Secondary 16K50;
D O I
暂无
中图分类号
学科分类号
摘要
The genus gen(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{gen}({\mathcal {D}})$$\end{document} of a finite-dimensional central division algebra D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} over a field F is defined as the collection of classes [D′]∈Br(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[{\mathcal {D}}']\in \text {Br}(F)$$\end{document}, where D′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}'$$\end{document} is a central division F-algebra having the same maximal subfields as D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}. We show that the fact that quaternion division algebras D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} and D′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}'$$\end{document} have the same maximal subfields does not imply that the matrix algebras Ml(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_l({\mathcal {D}})$$\end{document} and Ml(D′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_l({\mathcal {D}}')$$\end{document} have the same maximal subfields for l>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l>1$$\end{document}. Moreover, for any odd n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>1$$\end{document}, we construct a field L such that there are two quaternion division L-algebras D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} and D′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}'$$\end{document} and a central division L-algebra C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document} of degree and exponent n such that gen(D)=gen(D′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{gen} ({\mathcal {D}}) = \mathbf{gen} ({\mathcal {D}}')$$\end{document} but gen(D⊗C)≠gen(D′⊗C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{gen} ({\mathcal {D}}\otimes {\mathcal {C}}) \ne \mathbf{gen} ({\mathcal {D}}' \otimes {\mathcal {C}})$$\end{document}.
引用
收藏
页码:321 / 325
页数:4
相关论文
共 50 条
  • [31] Rigid Division Algebras
    Ponomarev, K. N.
    ALGEBRA AND LOGIC, 2014, 52 (06) : 471 - 483
  • [32] Selectivity in division algebras
    Luis Arenas-Carmona
    Archiv der Mathematik, 2014, 103 : 139 - 146
  • [33] ON COMMUTATIVE DIVISION ALGEBRAS
    ALBERT, AA
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (06) : 457 - 457
  • [34] Division composition algebras through their derivation algebras
    Perez-Izquierdo, Jose M.
    JOURNAL OF ALGEBRA, 2006, 303 (01) : 1 - 29
  • [35] A note on the existence of cyclic algebras in division algebras
    Motiee, Mehran
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4396 - 4399
  • [36] Group algebras that are direct products of division algebras
    Huppert, B
    Lorenz, F
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2004, 74 (1): : 123 - 133
  • [37] On the genus of a division algebra
    Chernousov, Vladimir I.
    Rapinchuk, Andrei S.
    Rapinchuk, Igor A.
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (17-18) : 807 - 812
  • [38] AN APPLICATION OF THE DIVISION-ALGEBRAS, JORDAN ALGEBRAS AND SPLIT COMPOSITION ALGEBRAS
    FOOT, R
    JOSHI, GC
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (18): : 4395 - 4413
  • [39] Functional identity on division algebras
    Ferreira, Bruno Leonardo Macedo
    Dantas, Alex Carrazedo
    Moraes, Gabriela C.
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024, 17 (03): : 667 - 673
  • [40] Division algebras with a projective basis
    Aljadeff, E
    Haile, D
    ISRAEL JOURNAL OF MATHEMATICS, 2001, 121 (1) : 173 - 198