The Hilbert-Kunz function of rings of finite Cohen-Macaulay type

被引:0
|
作者
Gerhard Seibert
机构
[1] Fakultät für Mathematik,
[2] Universität Regensburg,undefined
[3] Universitätsstr. 31,undefined
[4] D-93053 Regensburg,undefined
[5] Germany,undefined
来源
Archiv der Mathematik | 1997年 / 69卷
关键词
Generate Function; Local Ring; General Situation; Isomorphism Class; Noetherian Local Ring;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ (R,{\frak m},k) $\end{document} be a Noetherian local ring of prime characteristic p and d its Krull dimension. It is known that for an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \frak m $\end{document}-primary ideal I of R and a finitely generated R-module N the limit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lim \limits_{n\to \infty } l_R(N/I^{[n]}N)/p^{dn}$\end{document} exists where I [n] denotes the ideal of R generated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ x^{p^n} $\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ x \in I $\end{document}, and l R (M) the length of an R-module M.¶ We will show that the ordinary generating function¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \sum _{n = 0}^\infty l_R (N / I^{[n]} N) t^n \in {\Bbb Q} [[t]] $\end{document}¶¶of the Hilbert-Kunz function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\Bbb N} \to {\Bbb N}, n \mapsto l_R (N/I^{[n]}N) $\end{document} is rational, i.e., an element of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\Bbb Q} (t) $\end{document}, if R (1) is a finite R-module, N a maximal Cohen-Macaulay module and R is of finite Cohen-Macaulay type, i.e., the number of isomorphism classes of finite, indecomposable maximal Cohen-Macaulay modules over R is finite. From this result, we deduce that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \lim _ {n\to \infty } l_R (N / I^{[n]} N) / p^{dn} \in {\Bbb Q} $\end{document}. Here R (1) denotes R considered as an R-algebra via the Frobenius map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ R \to R, x \mapsto x^{p} $\end{document}. Actually we will consider a somewhat more general situation using the Frobenius functor.
引用
收藏
页码:286 / 296
页数:10
相关论文
共 50 条