On the Freiman theorem in finite fields

被引:0
|
作者
S. V. Konyagin
机构
[1] Moscow State University,
来源
Mathematical Notes | 2008年 / 84卷
关键词
Freiman theorem; set addition; finite field; Abelian group; Hamming metric; arithmetic progression; doubling constant;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:435 / 438
页数:3
相关论文
共 50 条
  • [31] A generalization of Freiman's 3k-3 Theorem
    Hamidoune, YO
    Plagne, A
    ACTA ARITHMETICA, 2002, 103 (02) : 147 - 156
  • [32] A model-theoretic note on the Freiman-Ruzsa theorem
    Martin-Pizarro, Amador
    Palacin, Daniel
    Wolf, Julia
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04):
  • [33] A Bertini type theorem for pencils over finite fields
    Asgarli, Shamil
    Ghioca, Dragos
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [34] Applications of the sum-product theorem in finite fields
    Wigderson, Avi
    CCC 2006: TWENTY-FIRST ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2006, : 111 - 111
  • [35] On Ritt's decomposition theorem in the case of finite fields
    Gutierrez, Jaime
    Sevilla, David
    FINITE FIELDS AND THEIR APPLICATIONS, 2006, 12 (03) : 403 - 412
  • [36] A quadratic Vinogradov mean value theorem in finite fields
    Mansfield, Sam
    Mudgal, Akshat
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (03): : 1007 - 1029
  • [37] A simple proof of Rolle's theorem for finite fields
    Ballantine, C
    Roberts, J
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (01): : 72 - 74
  • [38] ANALOG OF GREENBERGS THEOREM FOR HENSELIAN FIELDS OF FINITE RANK
    BASTOS, GG
    SANKARAN, N
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1980, 52 (02): : 211 - 212
  • [39] GENERALIZATIONS OF THE NORMAL BASIS THEOREM OF FINITE-FIELDS
    BSHOUTY, NH
    SEROUSSI, G
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (03) : 330 - 337
  • [40] Jordan–Landau theorem for matrices over finite fields
    Cheong, Gilyoung
    Lee, Jungin
    Nam, Hayan
    Yu, Myungjun
    Linear Algebra and Its Applications, 2022, 655 : 100 - 128