Supersonic axisymmetric microjets: structure and laminar–turbulent transition

被引:0
|
作者
V. M. Aniskin
S. G. Mironov
A. A. Maslov
I. S. Tsyryulnikov
机构
[1] Russian Academy of Sciences,Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch
[2] Novosibirsk State University,undefined
来源
关键词
Micronozzles; Supersonic microjets; Supersonic core length; Pitot microtube; Laminar–turbulent transition;
D O I
暂无
中图分类号
学科分类号
摘要
The supersonic core length of microjets and the influence of the laminar–turbulent transition on the core length are considered. Axisymmetric mini- and micronozzles with diameters from 341 to 10.4 μm are used. The microjet is studied with the use of a Pitot microtube, shadow flow visualization and hot-wire anemometry. It is demonstrated that the laminar–turbulent transition in the jet mixing layer exerts a dominating effect on the supersonic core length. The increasing of the supersonic core length is associated with the laminar flow in microjet. Decreasing of the supersonic core length is connected with the laminar–turbulent transition in microjet. Based on experimental results, a chart of microjet regimes is constructed. The influence of the Pitot tube diameter on the accuracy of supersonic core length determining is considered. The effect of the nozzle edge roughness on the supersonic core length is examined.
引用
收藏
页码:621 / 634
页数:13
相关论文
共 50 条
  • [41] To the Analysis of the Natural Pulsation Development During Laminar-Turbulent Transition in Supersonic Boundary Layer
    Kosinov, A. D.
    Yermolaev, Yu. G.
    Semionov, N. V.
    Kolosov, G. L.
    Panina, A. V.
    PROCEEDINGS OF THE XXV CONFERENCE ON HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2017), 2017, 1893
  • [42] Study of mechanism of breakdown in laminar-turbulent transition of supersonic boundary layer on flat plate
    Wei Cao
    Zhang-feng Huang
    Heng Zhou
    Applied Mathematics and Mechanics, 2006, 27 : 425 - 434
  • [43] On Mechanisms of the Action of Weak Shock Waves on Laminar-Turbulent Transition in Supersonic Boundary Layer
    Kosinov, A. D.
    Yatskikh, A. A.
    Yermolaev, Yu. G.
    Semionov, N. V.
    Kolosov, G. L.
    Piterimova, M. V.
    PROCEEDINGS OF THE XXV CONFERENCE ON HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2017), 2017, 1893
  • [44] On correspondence of laminar-turbulent transition processes in natural and in controlled supersonic experiments on flat plate
    Kosinov, AD
    Yermolaev, YG
    Semionov, NV
    LAMINAR-TURBULENT TRANSITION, 2000, : 493 - 498
  • [45] Laminar-turbulent transition in a supersonic boundary layer during initiation of a pulsed surface discharge
    I. A. Znamenskaya
    D. F. Latfullin
    I. V. Mursenkova
    Technical Physics Letters, 2008, 34 : 668 - 670
  • [46] Effect of unit Reynolds number on the laminar-turbulent transition on a swept wing in supersonic flow
    Yu. G. Ermolaev
    A. D. Kosinov
    A. N. Semenov
    N. V. Semionov
    A. A. Yatskikh
    Thermophysics and Aeromechanics, 2018, 25 : 659 - 665
  • [47] Entropy Effect in Laminar-Turbulent Transition of the Supersonic Boundary Layer in the Wake of an Isolated Roughness
    P. V. Chuvakhov
    Fluid Dynamics, 2020, 55 : 62 - 73
  • [48] Effect of unit Reynolds number on the laminar-turbulent transition on a swept wing in supersonic flow
    Ermolaev, Yu. G.
    Kosinov, A. D.
    Semenov, A. N.
    Semionov, N. V.
    Yatskikh, A. A.
    THERMOPHYSICS AND AEROMECHANICS, 2018, 25 (05) : 659 - 665
  • [49] Entropy Effect in Laminar-Turbulent Transition of the Supersonic Boundary Layer in the Wake of an Isolated Roughness
    Chuvakhov, P. V.
    FLUID DYNAMICS, 2020, 55 (01) : 62 - 73
  • [50] Laminar-turbulent transition in a supersonic boundary layer during initiation of a pulsed surface discharge
    Znamenskaya, I. A.
    Latfullin, D. F.
    Mursenkova, I. V.
    TECHNICAL PHYSICS LETTERS, 2008, 34 (08) : 668 - 670