Log-Sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations

被引:0
|
作者
V. I. Bogachev
A. V. Shaposhnikov
S. V. Shaposhnikov
机构
[1] Moscow State University,Department of Mechanics and Mathematics
[2] National Research University Higher School of Economics,undefined
关键词
Primary 35J15; Secondary 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every probability measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} satisfying the stationary Fokker–Planck–Kolmogorov equation obtained by a μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-integrable perturbation v of the drift term -x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-x$$\end{document} of the Ornstein–Uhlenbeck operator is absolutely continuous with respect to the corresponding Gaussian measure γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} and for the density f=dμ/dγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=d\mu /d\gamma $$\end{document} the integral of f|log(f+1)|α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f |\log (f+1)|^\alpha $$\end{document} against γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is estimated via ‖v‖L1(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert v\Vert _{L^1(\mu )}$$\end{document} for all α<1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <1/4$$\end{document}, which is a weakened L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-analog of the logarithmic Sobolev inequality. This yields that stationary measures of infinite-dimensional diffusions whose drifts are integrable perturbations of -x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-x$$\end{document} are absolutely continuous with respect to Gaussian measures. A generalization is obtained for equations on Riemannian manifolds.
引用
收藏
相关论文
共 50 条
  • [21] Estimates for Solutions to Fokker-Planck-Kolmogorov Equations with Integrable Drifts
    Bogachev, V. I.
    Shaposhnikov, A. V.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (03) : 559 - 563
  • [22] On uniqueness of solutions to the Cauchy problem for degenerate Fokker–Planck–Kolmogorov equations
    Vladimir I. Bogachev
    Michael Röckner
    Stanislav V. Shaposhnikov
    Journal of Evolution Equations, 2013, 13 : 577 - 593
  • [23] Representations of solutions to Fokker–Planck–Kolmogorov equations with coefficients of low regularity
    Vladimir I. Bogachev
    Stanislav V. Shaposhnikov
    Journal of Evolution Equations, 2020, 20 : 355 - 374
  • [24] On Dependence of Solutions to Fokker–Planck–Kolmogorov Equations on Their Coefficients and Initial Data
    V. I. Bogachev
    I. I. Malofeev
    S. V. Shaposhnikov
    Mathematical Notes, 2024, 116 (3) : 421 - 431
  • [25] Fokker-Planck-Kolmogorov Equations with a Parameter
    Bogachev, V. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2023, 108 (02) : 357 - 362
  • [26] On the Superposition Principle for Fokker–Planck–Kolmogorov Equations
    V. I. Bogachev
    M. Röckner
    S. V. Shaposhnikov
    Doklady Mathematics, 2019, 100 : 363 - 366
  • [27] A stationary Fokker-Planck-Kolmogorov equation with a potential
    V. I. Bogachev
    A. I. Kirillov
    S. V. Shaposhnikov
    Doklady Mathematics, 2014, 89 : 24 - 29
  • [28] A stationary Fokker-Planck-Kolmogorov equation with a potential
    Bogachev, V. I.
    Kirillov, A. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2014, 89 (01) : 24 - 29
  • [29] Computational Methods for Stationary and Nonstationary Fokker-Planck-Kolmogorov Equations with Random Coefficients
    Ben Said, Mohamed
    Azrar, Lahcen
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (09)
  • [30] On uniqueness of solutions to the Cauchy problem for degenerate Fokker-Planck-Kolmogorov equations
    Bogachev, Vladimir I.
    Roeckner, Michael
    Shaposhnikov, Stanislav V.
    JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (03) : 577 - 593