Log-Sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations

被引:0
|
作者
V. I. Bogachev
A. V. Shaposhnikov
S. V. Shaposhnikov
机构
[1] Moscow State University,Department of Mechanics and Mathematics
[2] National Research University Higher School of Economics,undefined
关键词
Primary 35J15; Secondary 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every probability measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} satisfying the stationary Fokker–Planck–Kolmogorov equation obtained by a μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-integrable perturbation v of the drift term -x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-x$$\end{document} of the Ornstein–Uhlenbeck operator is absolutely continuous with respect to the corresponding Gaussian measure γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} and for the density f=dμ/dγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=d\mu /d\gamma $$\end{document} the integral of f|log(f+1)|α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f |\log (f+1)|^\alpha $$\end{document} against γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is estimated via ‖v‖L1(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert v\Vert _{L^1(\mu )}$$\end{document} for all α<1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <1/4$$\end{document}, which is a weakened L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-analog of the logarithmic Sobolev inequality. This yields that stationary measures of infinite-dimensional diffusions whose drifts are integrable perturbations of -x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-x$$\end{document} are absolutely continuous with respect to Gaussian measures. A generalization is obtained for equations on Riemannian manifolds.
引用
收藏
相关论文
共 50 条
  • [1] Log-Sobolev-type inequalities for solutions to stationary Fokker-Planck-Kolmogorov equations
    Bogachev, V. I.
    Shaposhnikov, A. V.
    Shaposhnikov, S. V.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (05)
  • [2] On Sobolev Classes Containing Solutions to Fokker–Planck–Kolmogorov Equations
    V. I. Bogachev
    S. N. Popova
    S. V. Shaposhnikov
    Doklady Mathematics, 2018, 98 : 498 - 501
  • [3] On Sobolev Classes Containing Solutions to Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Popova, S. N.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 498 - 501
  • [4] Stationary Fokker-Planck-Kolmogorov Equations
    Bogachev, Vladimir, I
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 3 - 24
  • [5] DIFFERENTIABILITY OF SOLUTIONS OF STATIONARY FOKKER PLANCK KOLMOGOROV EQUATIONS WITH RESPECT TO A PARAMETER
    Bogachev, Vladimir I.
    Shaposhnikov, Stanislav V.
    Veretennikov, Alexander Yu.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3519 - 3543
  • [6] On Convergence to Stationary Distributions for Solutions of Nonlinear Fokker–Planck–Kolmogorov Equations
    Bogachev V.I.
    Röckner M.
    Shaposhnikov S.V.
    Journal of Mathematical Sciences, 2019, 242 (1) : 69 - 84
  • [7] Concentration Inequalities for Bounded Functionals via Log-Sobolev-Type Inequalities
    Goetze, Friedrich
    Sambale, Holger
    Sinulis, Arthur
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (03) : 1623 - 1652
  • [8] Concentration Inequalities for Bounded Functionals via Log-Sobolev-Type Inequalities
    Friedrich Götze
    Holger Sambale
    Arthur Sinulis
    Journal of Theoretical Probability, 2021, 34 : 1623 - 1652
  • [9] Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures
    Bogachev, Vladimir, I
    Roeckner, Michael
    Shaposhnikov, Stanislav, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (12) : 3681 - 3713
  • [10] On Sobolev regularity of solutions to Fokker-Planck-Kolmogorov equations with drifts in L1
    Bogachev, Vladimir, I
    Popova, Svetlana N.
    Shaposhnikov, Stanislav, V
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2019, 30 (01) : 205 - 221