Phase Transition for Continuum Widom–Rowlinson Model with Random Radii

被引:0
|
作者
David Dereudre
Pierre Houdebert
机构
[1] University of Lille,Laboratoire de Mathématiques Paul Painlevé
[2] Aix Marseille University,undefined
[3] CNRS,undefined
[4] Centrale Marseille,undefined
[5] I2M,undefined
来源
关键词
Gibbs point process; DLR equation; Boolean model; Continuum percolation; Random cluster model; Fortuin–Kasteleyn representation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the phase transition of continuum Widom–Rowlinson measures in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} with q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} types of particles and random radii. Each particle xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document} of type i is marked by a random radius ri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_i$$\end{document} distributed by a probability measure Qi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_i$$\end{document} on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^+$$\end{document}. The distributions Qi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_i$$\end{document} may be different for different i, this setting is called the non-symmetric case. The particles of same type do not interact with each other whereas a particle xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document} and xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_j$$\end{document} with different type i≠j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\ne j$$\end{document} interact via an exclusion hardcore interaction forcing ri+rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_i+r_j$$\end{document} to be smaller than |xi-xj|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x_i-x_j|$$\end{document}. In the symmetric integrable case (i.e. ∫rdQ1(dr)<+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int r^dQ_1(dr)<+\infty $$\end{document} and Qi=Q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_i=Q_1$$\end{document} for every 1≤i≤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le q$$\end{document}), we show that the Widom–Rowlinson measures exhibit a standard phase transition providing uniqueness, when the activity is small, and co-existence of q ordered phases, when the activity is large. In the non-integrable case (i.e. ∫rdQi(dr)=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int r^dQ_i(dr)=+\infty $$\end{document}, 1≤i≤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i \le q$$\end{document}), we show another type of phase transition. We prove, when the activity is small, the existence of at least q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document} extremal phases and we conjecture that, when the activity is large, only the q ordered phases subsist. We prove a weak version of this conjecture in the symmetric case by showing that the Widom–Rowlinson measure with free boundary condition is a mixing of the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} ordered phases if and only if the activity is large.
引用
收藏
页码:56 / 76
页数:20
相关论文
共 50 条
  • [21] THE ANALYSIS OF THE WIDOM-ROWLINSON MODEL BY STOCHASTIC GEOMETRIC METHODS
    CHAYES, JT
    CHAYES, L
    KOTECKY, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (03) : 551 - 569
  • [22] CRITICAL-BEHAVIOR OF THE WIDOM-ROWLINSON LATTICE MODEL
    DICKMAN, R
    STELL, G
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (21): : 8674 - 8676
  • [23] Dynamical Widom-Rowlinson Model and Its Mesoscopic Limit
    Finkelshtein, Dmitri
    Kondratiev, Yuri
    Kutoviy, Oleksandr
    Oliveira, Maria Joao
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (01) : 57 - 86
  • [24] PHASE-TRANSITION IN ONE-DIMENSIONAL WIDOM-ROWLINSON MODELS WITH SPATIALLY INHOMOGENEOUS POTENTIALS
    MIYAMOTO, M
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1985, 25 (01): : 59 - 70
  • [25] SOLUTION OF PERCUS-YEVICK EQUATION FOR WIDOM-ROWLINSON MODEL
    AHN, S
    LEBOWITZ, JL
    PHYSICS LETTERS A, 1973, A 44 (06) : 424 - 426
  • [26] Scaling fields and pressure mixing in the Widom-Rowlinson model
    Ren, Ruichao
    O'Keeffe, C. J.
    Orkoulas, G.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (14):
  • [27] Structure and phase behavior of Widom-Rowlinson mixtures: Integral equation approach
    Kim, Soon-Chul
    Seong, Baek-Seok
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 52 (01) : 173 - 177
  • [28] Non-equilibrium Dynamics for a Widom–Rowlinson Type Model with Mutations
    Martin Friesen
    Journal of Statistical Physics, 2017, 166 : 317 - 353
  • [29] MOLECULAR DYNAMICS OF WIDOM-ROWLINSON PARALLEL HARD-SQUARE MODEL
    FRISCH, HL
    CARLIER, C
    PHYSICAL REVIEW LETTERS, 1972, 28 (16) : 1019 - &
  • [30] MEAN FIELD-THEORY AND INFINITE DIMENSIONALITY IN WIDOM-ROWLINSON MODEL
    LIE, TJ
    JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (01): : 332 - &