Frobenius Structures Over Hilbert C*-Modules

被引:0
|
作者
Chris Heunen
Manuel L. Reyes
机构
[1] University of Edinburgh,School of Informatics
[2] Bowdoin College,Department of Mathematics
来源
Communications in Mathematical Physics | 2018年 / 361卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the monoidal dagger category of Hilbert C*-modules over a commutative C*-algebra from the perspective of categorical quantum mechanics. The dual objects are the finitely presented projective Hilbert C*-modules. Special dagger Frobenius structures correspond to bundles of uniformly finite-dimensional C*-algebras. A monoid is dagger Frobenius over the base if and only if it is dagger Frobenius over its centre and the centre is dagger Frobenius over the base. We characterise the commutative dagger Frobenius structures as finite coverings, and give nontrivial examples of both commutative and central dagger Frobenius structures. Subobjects of the tensor unit correspond to clopen subsets of the Gelfand spectrum of the C*-algebra, and we discuss dagger kernels.
引用
收藏
页码:787 / 824
页数:37
相关论文
共 50 条
  • [31] ON FRAMES FOR COUNTABLY GENERATED HILBERT MODULES OVER LOCALLY C*-ALGEBRAS
    Alizadeh, Leila
    Hassani, Mahmoud
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 527 - 533
  • [32] Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators
    Manuilov, Vladimir
    Troitsky, Evgenij
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (03)
  • [33] Graded Hilbert C*-modules
    Wang, Chunxiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
  • [34] Quaternion Hilbert C*-modules
    Omran, Saleh
    Ahmedi, A. El-Sayed
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (05) : 810 - 818
  • [35] Isometries of hilbert C*-modules
    Solel, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (11) : 4637 - 4660
  • [36] Hilbert C*-modules with a predual
    Schweizer, J
    JOURNAL OF OPERATOR THEORY, 2002, 48 (03) : 621 - 632
  • [37] Extensions of Hilbert C*-modules
    Bakic, D
    Guljas, B
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 537 - 558
  • [38] FRAMES IN HILBERT C*-MODULES
    Alijani, A.
    Dehghan, M. A.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2011, 73 (04): : 89 - 106
  • [39] Hilbert C*-modules and *-isomorphisms
    Asadi, Mohammad B.
    JOURNAL OF OPERATOR THEORY, 2008, 59 (02) : 431 - 434
  • [40] Descent of Hilbert C*-modules
    Crisp, Tyrone
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2020, 14 (02) : 487 - 529