On a hereditarily finitely based ai-semiring variety

被引:0
|
作者
Miaomiao Ren
Lingli Zeng
机构
[1] Northwest University,School of Mathematics
来源
Soft Computing | 2019年 / 23卷
关键词
Ai-semiring; Variety; Lattice; Identity; Hereditarily finitely based;
D O I
暂无
中图分类号
学科分类号
摘要
Let W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{W}$$\end{document} denote the join of the ai-semiring variety axiomatized by x2≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^2\approx x$$\end{document} and the ai-semiring variety axiomatized by xy≈zt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy\approx zt$$\end{document}. We show that the lattice of subvarieties of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{W}$$\end{document}, L(W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}(\mathbf{W})$$\end{document}, is a distributive lattice of order 312. Also, all members of this variety are finitely based and finitely generated. Thus, W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{W}$$\end{document} is hereditarily finitely based.
引用
收藏
页码:6819 / 6825
页数:6
相关论文
共 50 条
  • [21] A basis of identities of a variety generated by a finitely-based quasi-variety of groups
    Anokhin, MI
    SBORNIK MATHEMATICS, 1998, 189 (7-8) : 1115 - 1124
  • [22] A decidable variety that is finitely undecidable
    Jeong, JH
    JOURNAL OF SYMBOLIC LOGIC, 1999, 64 (02) : 651 - 677
  • [23] On minimal semiring generating sets of finitely generated commutative parasemifields
    Kala, Vitezslav
    Sima, Lucien
    ALGEBRA UNIVERSALIS, 2024, 85 (02)
  • [24] THE VARIETY GENERATED BY ALL MONOIDS OF ORDER FOUR IS FINITELY BASED
    Lee, Edmond W. H.
    Li, Jian Rong
    GLASNIK MATEMATICKI, 2015, 50 (02) : 373 - 396
  • [25] Semiring Reasoning Frameworks in AI and Their Computational Complexity
    Eiter, Thomas
    Kiesel, Rafael
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2023, 77 : 207 - 293
  • [26] Some nil-ai-semiring varieties
    Wu, Y. N.
    Zhao, X. Z.
    SEMIGROUP FORUM, 2024, 108 (01) : 258 - 271
  • [27] Semiring Reasoning Frameworks in AI and Their Computational Complexity
    Eiter T.
    Kiesel R.
    Journal of Artificial Intelligence Research, 2023, 77 : 207 - 293
  • [28] Some subvarieties of semiring variety COS3+
    Xian, Xuliang
    Shao, Yong
    Wang, Junling
    AIMS MATHEMATICS, 2022, 7 (03): : 4293 - 4303
  • [29] Nonfinitely based ai-semirings with finitely based semigroup reducts
    Jackson, Marcel
    Ren, Miaomiao
    Zhao, Xianzhong
    JOURNAL OF ALGEBRA, 2022, 611 : 211 - 245
  • [30] Some nil-ai-semiring varieties
    Y. N. Wu
    X. Z. Zhao
    Semigroup Forum, 2024, 108 : 258 - 271