A more accurate Briggs method for the logarithm

被引:0
|
作者
Awad H. Al-Mohy
机构
[1] King Khalid University,Department of Mathematics
来源
Numerical Algorithms | 2012年 / 59卷
关键词
Logarithm function; Briggs’ method; Briggs’ tables; Inverse scaling and squaring method; 15A60; 65F30;
D O I
暂无
中图分类号
学科分类号
摘要
A new approach for computing an expression of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a^{1/2^k}-1$\end{document} is presented that avoids the danger of subtractive cancellation in floating point arithmetic, where a is a complex number not belonging to the closed negative real axis and k is a nonnegative integer. We also derive a condition number for the problem. The algorithm therefore allows highly accurate numerical calculation of log(a) using Briggs’ method.
引用
收藏
页码:393 / 402
页数:9
相关论文
共 50 条