The method of lower and upper solutions for the cantilever beam equations with fully nonlinear terms

被引:0
|
作者
Yongxiang Li
Yabing Gao
机构
[1] Northwest Normal University,Department of Mathematics
关键词
Fully fourth-order boundary value problem; Cantilever beam equation; Lower and upper solution; Existence; 34B15; 34B18; 47N20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we discuss the existence of solutions of the fully fourth-order boundary value problem {u(4)=f(t,u,u′,u″,u‴),t∈[0,1],u(0)=u′(0)=u″(1)=u‴(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} u^{(4)}=f(t, u, u', u'', u'''), \quad t\in [0, 1], \\ u(0)=u'(0)=u''(1)=u'''(1)=0 , \end{cases} $$\end{document} which models the deformations of an elastic cantilever beam in equilibrium state, where f:[0,1]×R4→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:[0, 1]\times {\mathbb{R}}^{4}\to \mathbb{R}$\end{document} is continuous. Using the method of lower and upper solutions and the monotone iterative technique, we obtain some existence results under monotonicity assumptions on nonlinearity.
引用
收藏
相关论文
共 50 条
  • [41] Lower and upper bounds for lifespan of solutions to viscoelastic hyperbolic equations with variable sources and damping terms
    Dai, Lili
    Zhang, Zhuo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [42] An Overview of the Lower and Upper Solutions Method with Nonlinear Boundary Value Conditions
    Alberto Cabada
    Boundary Value Problems, 2011
  • [43] An Overview of the Lower and Upper Solutions Method with Nonlinear Boundary Value Conditions
    Cabada, Alberto
    BOUNDARY VALUE PROBLEMS, 2011,
  • [44] Classical solutions of fully nonlinear parabolic equations
    Cao, Yi
    Li, Dongsheng
    Wang, Lihe
    ARCHIV DER MATHEMATIK, 2010, 95 (01) : 53 - 61
  • [45] Classical solutions of fully nonlinear parabolic equations
    Yi Cao
    Dongsheng Li
    Lihe Wang
    Archiv der Mathematik, 2010, 95 : 53 - 61
  • [46] Nonclassical solutions of fully nonlinear elliptic equations
    Nadirashvili, Nikolai
    Vladut, Serge
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (04) : 1283 - 1296
  • [47] Nonclassical Solutions of Fully Nonlinear Elliptic Equations
    Nikolai Nadirashvili
    Serge Vlăduţ
    Geometric and Functional Analysis, 2007, 17 : 1283 - 1296
  • [48] Homogeneous solutions to fully nonlinear elliptic equations
    Nadirashvili, N
    Yuan, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (06) : 1647 - 1649
  • [49] Nonlinear evolution equations with noncoercive lower order terms
    El Hamdaoui, B.
    Bennouna, J.
    Redwane, H.
    APPLICABLE ANALYSIS, 2022, 101 (13) : 4615 - 4638
  • [50] ON A CLASS OF NONLINEAR ELLIPTIC EQUATIONS WITH LOWER ORDER TERMS
    Alvino, A.
    Mercaldo, A.
    Volpicelli, R.
    Betta, M. F.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2019, 32 (3-4) : 223 - 232