In this paper we discuss the existence of solutions of the fully fourth-order boundary value problem
{u(4)=f(t,u,u′,u″,u‴),t∈[0,1],u(0)=u′(0)=u″(1)=u‴(1)=0,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \textstyle\begin{cases} u^{(4)}=f(t, u, u', u'', u'''), \quad t\in [0, 1], \\ u(0)=u'(0)=u''(1)=u'''(1)=0 , \end{cases} $$\end{document} which models the deformations of an elastic cantilever beam in equilibrium state, where f:[0,1]×R4→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$f:[0, 1]\times {\mathbb{R}}^{4}\to \mathbb{R}$\end{document} is continuous. Using the method of lower and upper solutions and the monotone iterative technique, we obtain some existence results under monotonicity assumptions on nonlinearity.