Influence of velocity in nanoscale friction processes

被引:0
|
作者
R. Prioli
A.M.F. Rivas
F.L. Freire Jr.
A.O. Caride
机构
[1] Departamento de Física,
[2] Pontifícia Universidade Católica do Rio de Janeiro,undefined
[3] Cx. Postal 38 071,undefined
[4] 22 452-970,undefined
[5] Rio de Janeiro,undefined
[6] RJ,undefined
[7] Brazil,undefined
[8] Centro Brasileiro de Pesquisas Físicas,undefined
[9] Rua Dr. Xavier Sigaud 150,undefined
[10] 22 290-180,undefined
[11] Rio de Janeiro,undefined
[12] RJ,undefined
[13] Brazil,undefined
来源
Applied Physics A | 2003年 / 76卷
关键词
PACS: 07.79.Sp; 68.35.Af; 62.20.Qp;
D O I
暂无
中图分类号
学科分类号
摘要
Force-microscopy images of boric acid crystals were obtained experimentally and simulated with the use of a two-dimensional mechanical model. An analysis of the stick and slip movement of the microscope tip shows that the energy-dissipation mechanism is strongly influenced by the non-linear dynamics of the sliding system. The contributions of stick and viscous forces on the energy dissipation (or friction forces) are studied as a function of the relative scanning velocity. At low relative velocities, the stick forces are shown to be responsible for the energy dissipation. This energy is velocity-dependent, due to the coupling between the two degrees of freedom of the sliding system. As the scanning velocity increases the stick forces are damped; the viscous force is then predominant in the energy-dissipation process.
引用
收藏
页码:565 / 569
页数:4
相关论文
共 50 条
  • [41] INFLUENCE OF REINFORCEMENT ADDITIVES ON SINTERING AND HARDENING PROCESSES OF NANOSCALE HYDROXYAPATITE
    Bogdanova, E. A.
    Giniyatullin, I. M.
    Pereverzev, D., I
    Razgulyaeva, V. M.
    PHYSICAL AND CHEMICAL ASPECTS OF THE STUDY OF CLUSTERS NANOSTRUCTURES AND NANOMATERIALS, 2019, (11) : 548 - 554
  • [42] Effects of lubrication on friction and heat transfer in machining processes on the nanoscale: a molecular dynamics approach
    Lautenschlaeger, Martin P.
    Stephan, Simon
    Horsch, Martin T.
    Kirsch, Benjamin
    Aurich, Jan C.
    Hasse, Hans
    11TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2018, 67 : 296 - 301
  • [43] Nanoscale Friction Dynamic Modeling
    Landolsi, Fakhreddine
    Ghorbel, Fathi H.
    Lou, Jun
    Lu, Hao
    Sun, Yuekai
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2009, 131 (06): : 1 - 7
  • [44] Friction and fatigue at the nanoscale.
    Putterman, SJ
    Budakian, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : C28 - C28
  • [45] Vibrations reduce nanoscale friction
    Gould, Paula
    MATERIALS TODAY, 2006, 9 (09) : 15 - 15
  • [46] NANOSCALE FRICTION Sliding charges
    Szoszkiewicz, Robert
    Riedo, Elisa
    NATURE MATERIALS, 2014, 13 (07) : 666 - 668
  • [47] Thermodynamic aspects of nanoscale friction
    Torche, P. C.
    Polcar, T.
    Hovorka, O.
    PHYSICAL REVIEW B, 2019, 100 (12)
  • [48] Nanoscale lubrication and friction control
    Gao, JP
    Luedtke, WD
    Landman, U
    FUNDAMENTALS OF TRIBOLOGY AND BRIDGING THE GAP BETWEEN THE MACRO-AND MICRO/NANOSCALES, 2001, 10 : 607 - 629
  • [49] Nanoscale friction and wear maps
    Tambe, Nikhil S.
    Bhushan, Bharat
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1869): : 1405 - 1424
  • [50] Measuring Rolling Friction at the Nanoscale
    Scherrer, Simon
    Ramakrishna, Shivaprakash N.
    Niggel, Vincent
    Spencer, Nicholas D.
    Isa, Lucio
    LANGMUIR, 2024, 40 (13) : 6750 - 6760