Estimates on Eigenvalues of Laplacian

被引:0
|
作者
Qing-Ming Cheng
Hongcang Yang
机构
[1] Saga University,Department of Mathematics, Faculty of Science and Engineering
[2] Academy of Mathematics and Systematical Sciences,undefined
来源
Mathematische Annalen | 2005年 / 331卷
关键词
Manifold; Riemannian Manifold; Unit Sphere; Asymptotical Formula; Connected Domain;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study eigenvalues of Laplacian on either a bounded connected domain in an n-dimensional unit sphere Sn(1), or a compact homogeneous Riemannian manifold, or an n-dimensional compact minimal submanifold in an N-dimensional unit sphere SN(1). We estimate the k+1-th eigenvalue by the first k eigenvalues. As a corollary, we obtain an estimate of difference between consecutive eigenvlaues. Our results are sharper than ones of P. C. Yang and Yau [25], Leung [19], Li [20] and Harrel II and Stubbe [12], respectively. From Weyl’s asymptotical formula, we know that our estimates are optimal in the sense of the order of k for eigenvalues of Laplacian on a bounded connected domain in an n-dimensional unit sphere Sn(1).
引用
收藏
页码:445 / 460
页数:15
相关论文
共 50 条