Can machines learn with hard constraints?

被引:0
|
作者
Jie Pan
机构
[1] Nature Computational Science,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:244 / 244
相关论文
共 50 条
  • [41] Machine learning in neurology: what neurologists can learn from machines and vice versa
    Rose Bruffaerts
    Journal of Neurology, 2018, 265 : 2745 - 2748
  • [42] Machines learn from biology
    Mark Buchanan
    Nature Physics, 2020, 16 : 238 - 238
  • [43] Machines that Learn and Teach Seamlessly
    Stein, Gary
    Gonzalez, Avelino J.
    Barham, Clayton
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2013, 6 (04): : 389 - 402
  • [44] MACHINES THAT LEARN FROM HINTS
    ABUMOSTAFA, YS
    SCIENTIFIC AMERICAN, 1995, 272 (04) : 64 - 69
  • [45] Machines learn to recognize glasses
    Michele Ceriotti
    Vincenzo Vitelli
    Nature Physics, 2016, 12 : 377 - 378
  • [46] Machines learn from biology
    Buchanan, Mark
    NATURE PHYSICS, 2020, 16 (03) : 238 - 238
  • [47] Machines learn chemical intuition
    Cohen, Seth
    NATURE, 2019, 566 (7745) : 464 - 465
  • [48] Hard limits to cognitive flexibility: ants can learn to ignore but not avoid pheromone trails
    Wenig, Katharina
    Bach, Richard
    Czaczkes, Tomer J.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2021, 224 (11):
  • [49] Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks
    Schwarzschild, Avi
    Borgnia, Eitan
    Gupta, Arjun
    Huang, Furong
    Vishkin, Uzi
    Goldblum, Micah
    Goldstein, Tom
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [50] Learning to learn:: From smart machines to intelligent machines
    Raducanu, B.
    Vitria, J.
    PATTERN RECOGNITION LETTERS, 2008, 29 (08) : 1024 - 1032