On possible composite structure of scalar fields in expanding universe

被引:0
|
作者
A. A. Zheltukhin
机构
[1] Kharkov Institute of Physics and Technology,NORDITA
[2] KTH Royal Institute of Technology and Stockholm University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Scalar fields in curved backgrounds are assumed to be composite objects. As an example realizing such a possibility we consider a model of the massless tensor field lμν(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\mu \nu }(x)$$\end{document} in a 4-dim. background gμν(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }(x)$$\end{document} with spontaneously broken Weyl and scale symmetries. It is shown that the potential of lμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\mu \nu }$$\end{document}, represented by a scalar quartic polynomial, has the degenerate extremal described by the composite Nambu–Goldstone scalar boson ϕ(x):=gμνlμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (x):=g^{\mu \nu }l_{\mu \nu }$$\end{document}. Removal of the degeneracy shows that ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} acquires a non-zero vev ⟨ϕ⟩0=μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \phi \rangle _{0}=\mu $$\end{document} which, together with the free parameters of the potential, defines the cosmological constant. The latter is zero for a certain choice of the parameters.
引用
收藏
相关论文
共 50 条
  • [21] ELECTROMAGNETIC-FIELDS IN AN EXPANDING UNIVERSE
    HOGAN, PA
    ELLIS, GFR
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (01) : 233 - 240
  • [22] COHERENT SCALAR-FIELD OSCILLATIONS IN AN EXPANDING UNIVERSE
    TURNER, MS
    PHYSICAL REVIEW D, 1983, 28 (06): : 1243 - 1247
  • [23] Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields
    Pozdeeva, Ekaterina O.
    Skugoreva, Maria A.
    Toporensky, Alexey V.
    Vernov, Sergey Yu.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (12):
  • [24] DEVELOPMENT OF STRUCTURE IN EXPANDING UNIVERSE
    SILK, J
    WHITE, SD
    ASTROPHYSICAL JOURNAL, 1978, 223 (02): : L59 - L62
  • [25] GLOBAL STRUCTURE OF THE EXPANDING UNIVERSE
    GONCHAROV, AS
    LINDE, AD
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1987, 92 (04): : 1137 - 1150
  • [26] Fundamental scalar fields and the dark side of the universe
    Mychelkin, Eduard G.
    Makukov, Maxim A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2015, 24 (12):
  • [27] A contracting universe driven by two scalar fields
    Finelli, F
    PHYSICS LETTERS B, 2002, 545 (1-2) : 1 - 7
  • [28] SCALAR AND SPINOR FIELDS IN THE VERY EARLY UNIVERSE
    SRIVASTAVA, SK
    GENERAL RELATIVITY AND GRAVITATION, 1987, 19 (06) : 537 - 543
  • [29] Gauging universe expansion via scalar fields
    Kumar, Devanarayanan Rajeeb
    Pathak, S. D.
    Ojha, Vikash Kumar
    CHINESE PHYSICS C, 2023, 47 (05)
  • [30] Gauging universe expansion via scalar fields
    Devanarayanan Rajeeb Kumar
    S.D.Pathak
    Vikash Kumar Ojha
    Chinese Physics C, 2023, (05) : 217 - 226