Extrapolation and superconvergence of the Steklov eigenvalue problem

被引:0
|
作者
Mingxia Li
Qun Lin
Shuhua Zhang
机构
[1] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
[2] Tianjin University of Finance and Economics,Research Center for Mathematics and Economics
来源
关键词
The Steklov eigenvalue problem; Graded meshes; Richardson extrapolation; Superconvergence; A posteriori error estimators; 76S05; 45K05; 65M12; 65M60; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
On the basis of a transform lemma, an asymptotic expansion of the bilinear finite element is derived over graded meshes for the Steklov eigenvalue problem, such that the Richardson extrapolation can be applied to increase the accuracy of the approximation, from which the approximation of O(h3.5) is obtained. In addition, by means of the Rayleigh quotient acceleration technique and an interpolation postprocessing method, the superconvergence of the bilinear finite element is presented over graded meshes for the Steklov eigenvalue problem, and the approximation of O(h3) is gained. Finally, numerical experiments are provided to demonstrate the theoretical results.
引用
收藏
页码:25 / 44
页数:19
相关论文
共 50 条
  • [31] On a Steklov eigenvalue problem associated with the (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (02) : 161 - 171
  • [32] A virtual element method for a biharmonic Steklov eigenvalue problem
    Monzon, Gabriel
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (04) : 325 - 337
  • [33] Rearrangements and minimization of the principal eigenvalue of a nonlinear Steklov problem
    Emamizadeh, Behrouz
    Zivari-Rezapour, Mohsen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) : 5697 - 5704
  • [34] Nonconforming finite element approximations of the Steklov eigenvalue problem
    Yang, Yidu
    Li, Qin
    Li, Sirui
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) : 2388 - 2401
  • [35] A multilevel Newton’s method for the Steklov eigenvalue problem
    Meiling Yue
    Fei Xu
    Manting Xie
    Advances in Computational Mathematics, 2022, 48
  • [36] Superconvergence of the finite element method for the Stokes eigenvalue problem
    Sheng, Ying
    Zhang, Tie
    Pan, Zixing
    CHAOS SOLITONS & FRACTALS, 2021, 144
  • [37] Steklov eigenvalue problem with a-harmonic solutions and variable exponents
    Karim, Belhadj
    Zerouali, Abdellah
    Chakrone, Omar
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (03) : 363 - 373
  • [38] Isoparametric finite-element approximation of a Steklov eigenvalue problem
    Andreev, AB
    Todorov, TD
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) : 309 - 322
  • [39] BOUNDARY ELEMENT APPROXIMATION OF STEKLOV EIGENVALUE PROBLEM FOR HELMHOLTZ EQUATION
    Wei-jun Tang (Laboratory of Computational Physics
    Hou-de Han (Department of Applied Mathematics
    Journal of Computational Mathematics, 1998, (02) : 165 - 178
  • [40] Local and parallel finite element algorithms for the Steklov eigenvalue problem
    Bi, Hai
    Li, Zhengxia
    Yang, Yidu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 399 - 417