Extrapolation and superconvergence of the Steklov eigenvalue problem

被引:0
|
作者
Mingxia Li
Qun Lin
Shuhua Zhang
机构
[1] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
[2] Tianjin University of Finance and Economics,Research Center for Mathematics and Economics
来源
关键词
The Steklov eigenvalue problem; Graded meshes; Richardson extrapolation; Superconvergence; A posteriori error estimators; 76S05; 45K05; 65M12; 65M60; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
On the basis of a transform lemma, an asymptotic expansion of the bilinear finite element is derived over graded meshes for the Steklov eigenvalue problem, such that the Richardson extrapolation can be applied to increase the accuracy of the approximation, from which the approximation of O(h3.5) is obtained. In addition, by means of the Rayleigh quotient acceleration technique and an interpolation postprocessing method, the superconvergence of the bilinear finite element is presented over graded meshes for the Steklov eigenvalue problem, and the approximation of O(h3) is gained. Finally, numerical experiments are provided to demonstrate the theoretical results.
引用
收藏
页码:25 / 44
页数:19
相关论文
共 50 条
  • [1] Extrapolation and superconvergence of the Steklov eigenvalue problem
    Li, Mingxia
    Lin, Qun
    Zhang, Shuhua
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (01) : 25 - 44
  • [2] A posteriori and superconvergence error analysis for finite element approximation of the Steklov eigenvalue problem
    Xiong, Chunguang
    Xie, Manting
    Luo, Fusheng
    Su, Hongling
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 90 - 99
  • [3] Matlab Experiments on Extrapolation of The Nonconforming Crouzeix-Raviart Element for Steklov Eigenvalue Problem
    Bi, Hai
    Yang, Yi-Du
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 2: MODELLING AND SIMULATION IN ENGINEERING, 2010, : 160 - 163
  • [4] GUARANTEED EIGENVALUE BOUNDS FOR THE STEKLOV EIGENVALUE PROBLEM
    You, Chun'guang
    Xie, Hehu
    Liu, Xuefeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1395 - 1410
  • [5] On a Steklov-Robin eigenvalue problem
    Gavitone, Nunzia
    Sannipoli, Rossano
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
  • [6] A DRBEM approximation of the Steklov eigenvalue problem
    Turk, Onder
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 122 : 232 - 241
  • [7] ON THE FIRST EIGENVALUE OF THE STEKLOV EIGENVALUE PROBLEM FOR THE INFINITY LAPLACIAN
    Le, An
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [8] The Steklov eigenvalue problem in a cuspidal domain
    Armentano, Maria G.
    Lombardi, Ariel L.
    NUMERISCHE MATHEMATIK, 2020, 144 (02) : 237 - 270
  • [9] An HDG method for the Steklov eigenvalue problem
    Monk, Peter
    Zhang, Yangwen
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (03) : 1929 - 1962
  • [10] The Steklov eigenvalue problem in a cuspidal domain
    María G. Armentano
    Ariel L. Lombardi
    Numerische Mathematik, 2020, 144 : 237 - 270