Matrix integral expansion of colored Jones polynomials for figure-eight knot

被引:0
|
作者
A. Alexandrov
D. Melnikov
机构
[1] University of Freiburg,Mathematics Institute
[2] Institute for Theoretical and Experimental Physics,International Institute of Physics
[3] UFRN,undefined
[4] Capim Macio,undefined
来源
JETP Letters | 2015年 / 101卷
关键词
JETP Letter; High Energy Phys; Jones Polynomial; Matrix Integral; HOMFLY Polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
We examine a possible extension of the matrix integral representation of knot invariants beyond the class of torus knots. In particular, we study a representation of the SU(2) quantum Racah coefficients by double matrix integrals. We find that the Racah coefficients are mapped to expansion coefficients in some basis of double integrals. The transformed coefficients have a number of interesting algebraic properties.
引用
收藏
页码:51 / 56
页数:5
相关论文
共 44 条
  • [21] Classification of tight contact structures on surgeries on the figure-eight knot
    Conway, James
    Min, Hyunki
    GEOMETRY & TOPOLOGY, 2020, 24 (03) : 1457 - 1517
  • [22] Computing immersed normal surfaces in the figure-eight knot complement
    Rannard, R
    EXPERIMENTAL MATHEMATICS, 1999, 8 (01) : 73 - 84
  • [23] Constructing thin subgroups commensurable with the figure-eight knot group
    Ballas, Samuel
    Long, Darren D.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (05): : 3011 - 3024
  • [24] Finite volume properly convex deformations of the figure-eight knot
    Samuel A. Ballas
    Geometriae Dedicata, 2015, 178 : 49 - 73
  • [25] Branched Spherical CR Structures on the Complement of the Figure-Eight Knot
    Falbel, Elisha
    Wang, Jieyan
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (03) : 635 - 667
  • [26] The fundamental group of the double of the figure-eight knot exterior is GFERF
    Long, DD
    Reid, AW
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 391 - 396
  • [27] The regular projective solution space of the figure-eight knot complement
    Matsumoto, S
    Rannard, R
    EXPERIMENTAL MATHEMATICS, 2000, 9 (02) : 221 - 234
  • [28] Asymptotic behaviors of the colored Jones polynomials of a torus knot
    Murakami, H
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2004, 15 (06) : 547 - 555
  • [29] The (2,1)-cable of the figure-eight knot is not smoothly slice
    Dai, Irving
    Kang, Sungkyung
    Mallick, Abhishek
    Park, Junghwan
    Stoffregen, Matthew
    INVENTIONES MATHEMATICAE, 2024, 238 (02) : 371 - 390
  • [30] A grid-enabled algorithm yields figure-eight molecular knot
    Psomopoulos, Fotis E.
    Mitkas, Pericles A.
    Krinas, Christos S.
    Demetropoulos, Ioannis N.
    MOLECULAR SIMULATION, 2009, 35 (09) : 725 - 736