Matrix integral expansion of colored Jones polynomials for figure-eight knot

被引:0
|
作者
A. Alexandrov
D. Melnikov
机构
[1] University of Freiburg,Mathematics Institute
[2] Institute for Theoretical and Experimental Physics,International Institute of Physics
[3] UFRN,undefined
[4] Capim Macio,undefined
来源
JETP Letters | 2015年 / 101卷
关键词
JETP Letter; High Energy Phys; Jones Polynomial; Matrix Integral; HOMFLY Polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
We examine a possible extension of the matrix integral representation of knot invariants beyond the class of torus knots. In particular, we study a representation of the SU(2) quantum Racah coefficients by double matrix integrals. We find that the Racah coefficients are mapped to expansion coefficients in some basis of double integrals. The transformed coefficients have a number of interesting algebraic properties.
引用
收藏
页码:51 / 56
页数:5
相关论文
共 44 条