Successive Nonparametric Estimation of Conditional Distributions

被引:0
|
作者
J. Antonio Vargas-Guzmán
Roussos Dimitrakopoulos
机构
[1] The University of Queensland,WH Bryan Mining Geology Research Centre
来源
Mathematical Geology | 2003年 / 35卷
关键词
Non-Gaussian random functions; nonparametric estimation; conditional covariance; cokriging of indicators; indicator simulation;
D O I
暂无
中图分类号
学科分类号
摘要
Spatial characterization of non-Gaussian attributes in earth sciences and engineering commonly requires the estimation of their conditional distribution. The indicator and probability kriging approaches of current nonparametric geostatistics provide approximations for estimating conditional distributions. They do not, however, provide results similar to those in the cumbersome implementation of simultaneous cokriging of indicators. This paper presents a new formulation termed successive cokriging of indicators that avoids the classic simultaneous solution and related computational problems, while obtaining equivalent results to the impractical simultaneous solution of cokriging of indicators. A successive minimization of the estimation variance of probability estimates is performed, as additional data are successively included into the estimation process. In addition, the approach leads to an efficient nonparametric simulation algorithm for non-Gaussian random functions based on residual probabilities.
引用
收藏
页码:39 / 52
页数:13
相关论文
共 50 条
  • [31] On the estimation of a monotone conditional variance in nonparametric regression
    Dette, Holger
    Pilz, Kay
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (01) : 111 - 141
  • [32] Conditional stochastic kernel estimation by nonparametric methods
    Laurini, Marcio Poletti
    Valls Pereira, Pedro L.
    ECONOMICS LETTERS, 2009, 105 (03) : 234 - 238
  • [33] Nonparametric estimation of conditional mode in the spatial case
    Abdi, Ahmedoune Ould
    Diop, Aliou
    Dabo-Niang, Sophie
    Abdi, Sidi Ali Ould
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) : 815 - 819
  • [34] Nonparametric estimation of multivariate multiparameter conditional copulas
    Lin, Jin-Guan
    Zhang, Kong-Sheng
    Zhao, Yan-Yong
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (01) : 126 - 136
  • [35] Nonparametric estimation of conditional VaR and expected shortfall
    Cai, Zongwu
    Wang, Xian
    JOURNAL OF ECONOMETRICS, 2008, 147 (01) : 120 - 130
  • [36] Nonparametric kernel estimation of conditional copula density
    Djaloud, Toihir Soulaimana
    Seck, Cheikh Tidiane
    STATISTICS & PROBABILITY LETTERS, 2024, 212
  • [37] Nonparametric estimation of conditional marginal excess moments
    Goegebeur, Yuri
    Guillou, Armelle
    Ho, Nguyen Khanh Le
    Qin, Jing
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 193
  • [38] On the estimation of a monotone conditional variance in nonparametric regression
    Holger Dette
    Kay Pilz
    Annals of the Institute of Statistical Mathematics, 2009, 61 : 111 - 141
  • [39] Nonparametric estimation and inference on conditional quantile processes
    Qu, Zhongjun
    Yoon, Jungmo
    JOURNAL OF ECONOMETRICS, 2015, 185 (01) : 1 - 19
  • [40] Nonparametric estimation of a conditional quantile for α-mixing processes
    Honda, T
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (03) : 459 - 470