Successive Nonparametric Estimation of Conditional Distributions

被引:0
|
作者
J. Antonio Vargas-Guzmán
Roussos Dimitrakopoulos
机构
[1] The University of Queensland,WH Bryan Mining Geology Research Centre
来源
Mathematical Geology | 2003年 / 35卷
关键词
Non-Gaussian random functions; nonparametric estimation; conditional covariance; cokriging of indicators; indicator simulation;
D O I
暂无
中图分类号
学科分类号
摘要
Spatial characterization of non-Gaussian attributes in earth sciences and engineering commonly requires the estimation of their conditional distribution. The indicator and probability kriging approaches of current nonparametric geostatistics provide approximations for estimating conditional distributions. They do not, however, provide results similar to those in the cumbersome implementation of simultaneous cokriging of indicators. This paper presents a new formulation termed successive cokriging of indicators that avoids the classic simultaneous solution and related computational problems, while obtaining equivalent results to the impractical simultaneous solution of cokriging of indicators. A successive minimization of the estimation variance of probability estimates is performed, as additional data are successively included into the estimation process. In addition, the approach leads to an efficient nonparametric simulation algorithm for non-Gaussian random functions based on residual probabilities.
引用
收藏
页码:39 / 52
页数:13
相关论文
共 50 条
  • [1] Successive nonparametric estimation of conditional distributions
    Vargas-Guzmán, JA
    Dimitrakopoulos, R
    MATHEMATICAL GEOLOGY, 2003, 35 (01): : 39 - 52
  • [2] Nonparametric estimation of conditional distributions
    Gyorfi, Laszlo
    Kohler, Michael
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (05) : 1872 - 1879
  • [3] A Conditional Gradient Approach for Nonparametric Estimation of Mixing Distributions
    Jagabathula, Srikanth
    Subramanian, Lakshminarayanan
    Venkataraman, Ashwin
    MANAGEMENT SCIENCE, 2020, 66 (08) : 3635 - 3656
  • [4] NONPARAMETRIC-ESTIMATION OF MULTIVARIATE JOINT AND CONDITIONAL SPATIAL DISTRIBUTIONS
    DAVIS, BM
    JALKANEN, GJ
    MATHEMATICAL GEOLOGY, 1988, 20 (04): : 367 - 381
  • [5] Nonparametric tests for conditional independence using conditional distributions
    Bouezmarni, Taoufik
    Taamouti, Abderrahim
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) : 697 - 719
  • [6] A nonparametric bootstrap test of conditional distributions
    Fan, Yanqin
    Li, Qi
    Min, Insik
    ECONOMETRIC THEORY, 2006, 22 (04) : 587 - 613
  • [7] Nonparametric estimation of a conditional density
    Bott, Ann-Kathrin
    Kohler, Michael
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (01) : 189 - 214
  • [8] Nonparametric estimation of a conditional density
    Ann-Kathrin Bott
    Michael Kohler
    Annals of the Institute of Statistical Mathematics, 2017, 69 : 189 - 214
  • [9] Nonparametric estimation of conditional expectation
    Li, Jiexiang
    Tran, Lanh Tat
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 164 - 175
  • [10] NONPARAMETRIC-ESTIMATION OF THE CONDITIONAL MODE
    SAMANTA, M
    THAVANESWARAN, A
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (12) : 4515 - 4524