Numerical Solutions to Some Optimal Control Problems Arising from Innovation Diffusion

被引:2
|
作者
Luigi De Cesare
Andrea Di Liddo
Stefania Ragni
机构
[1] Università di Lecce,Facoltà di Economia
[2] Università di Foggia,Facoltà di Economia
[3] Università di Bari,Facoltà di Economia
关键词
innovation diffusion; marketing models; optimal control problem; numerical approximation; Simulated Annealing;
D O I
10.1023/A:1026185814203
中图分类号
学科分类号
摘要
In this paper we propose a numerical approach for the solution of some optimalcontrol problems arising in the field of marketing decision models. Inparticular, we account for a specific innovation diffusion model. A numericalapproach may be useful to investigate some features of state variables andparameters of interest. The discrete problem is solved by the SimulatedAnnealing method and the resulting numerical scheme is applied to some testcases.
引用
收藏
页码:173 / 186
页数:13
相关论文
共 50 条
  • [21] Some nonlinear optimal control problems with closed-form solutions
    Margaliot, M
    Langholz, G
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2001, 11 (14) : 1365 - 1374
  • [23] A SURVEY OF NUMERICAL SOLUTIONS FOR STOCHASTIC CONTROL PROBLEMS: SOME RECENT PROGRESS
    Jin, Zhuo
    Qiu, Ming
    Tran, Ky Q.
    Yin, George
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (02): : 213 - 253
  • [24] SPECIAL SOLUTIONS TO SOME KOLMOGOROV EQUATIONS ARISING FROM CUBIC SENSOR PROBLEMS
    Yau, Stephen S. T.
    Du, Ruxu
    Jia, Lixing
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2007, 7 (02) : 195 - 206
  • [25] ON SOME PROBLEMS OF OPTIMAL CONTROL
    Aleksandrov, Vladimir Mikhailovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1383 - 1409
  • [26] SOME PROBLEMS OF OPTIMAL CONTROL
    EKELAND, I
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (25): : 1585 - &
  • [27] Numerical solution of a class of parabolic partial differential equations arising in optimal control problems with uncertainty
    Dahleh, M.
    Pelrce, A.P.
    Numerical Methods for Partial Differential Equations, 1992, 8 (01) : 77 - 95
  • [28] A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems
    Ezz-Eldien, S. S.
    Doha, E. H.
    Baleanu, D.
    Bhrawy, A. H.
    JOURNAL OF VIBRATION AND CONTROL, 2017, 23 (01) : 16 - 30
  • [29] Pointwise Error Estimates of Numerical Solutions to Linear Quadratic Optimal Control Problems
    Hofmann, S.
    Borzi, A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
  • [30] A Constrained LQ Approach to Numerical Solutions for Constrained Nonlinear Optimal Control Problems
    Imae, Joe
    Ando, Tomonari
    Kobayashi, Tomoaki
    Zhai, Guisheng
    2009 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2009, : 170 - 174