Numerical Solutions to Some Optimal Control Problems Arising from Innovation Diffusion

被引:2
|
作者
Luigi De Cesare
Andrea Di Liddo
Stefania Ragni
机构
[1] Università di Lecce,Facoltà di Economia
[2] Università di Foggia,Facoltà di Economia
[3] Università di Bari,Facoltà di Economia
关键词
innovation diffusion; marketing models; optimal control problem; numerical approximation; Simulated Annealing;
D O I
10.1023/A:1026185814203
中图分类号
学科分类号
摘要
In this paper we propose a numerical approach for the solution of some optimalcontrol problems arising in the field of marketing decision models. Inparticular, we account for a specific innovation diffusion model. A numericalapproach may be useful to investigate some features of state variables andparameters of interest. The discrete problem is solved by the SimulatedAnnealing method and the resulting numerical scheme is applied to some testcases.
引用
收藏
页码:173 / 186
页数:13
相关论文
共 50 条
  • [1] Numerical solutions of optimal switching control problems
    Ruby, T
    Rehbock, V
    OPTIMIZATION AND CONTROL WITH APPLICATIONS, 2005, 96 : 447 - 459
  • [2] Numerical treatment of a class of optimal control problems arising in economics
    Emmrich, E
    Schmitt, H
    OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (05): : 747 - 767
  • [3] Numerical solution of some optimal control problems
    Kolmanovskii, VB
    Shaikhet, LE
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1996, 14 (01) : 101 - 130
  • [4] Analytical and numerical solutions to ergodic control problems arising in environmental management
    Yoshioka, Hidekazu
    Tsujimura, Motoh
    Yaegashi, Yuta
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (13) : 8329 - 8352
  • [5] Analytical and numerical solutions to ergodic control problems arising in environmental management
    Yoshioka, Hidekazu
    Tsujimura, Motoh
    Yaegashi, Yuta
    arXiv, 2020,
  • [6] Numerical approximation of some time optimal control problems
    Tucsnak, Marius
    Valein, Julie
    Wu, Chi-Ting
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 1339 - 1342
  • [7] Sensitivity of Optimal Control Problems Arising from their Hamiltonian Structure
    Dell'Elce, Lamberto
    Scheeres, Daniel J.
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2020, 67 (02): : 539 - 551
  • [8] Sensitivity of Optimal Control Problems Arising from their Hamiltonian Structure
    Lamberto Dell’Elce
    Daniel J. Scheeres
    The Journal of the Astronautical Sciences, 2020, 67 : 539 - 551
  • [9] Numerical Solution of Some Types of Fractional Optimal Control Problems
    Sweilam, Nasser Hassan
    Al-Ajami, Tamer Mostafa
    Hoppe, Ronald H. W.
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [10] SOME EFFICIENT ALGORITHMS FOR A CLASS OF ABSTRACT OPTIMIZATION PROBLEMS ARISING IN OPTIMAL CONTROL
    BARR, RO
    GILBERT, EG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (06) : 640 - +