Performance of first-order methods for smooth convex minimization: a novel approach

被引:0
|
作者
Yoel Drori
Marc Teboulle
机构
[1] Tel-Aviv University,School of Mathematical Sciences
来源
Mathematical Programming | 2014年 / 145卷
关键词
Performance of first-order algorithms; Rate of convergence; Complexity; Smooth convex minimization; Duality; Semidefinite relaxations; Fast gradient schemes ; Heavy Ball method; 90C60; 49M25; 90C25; 90C20; 90C22; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a novel approach for analyzing the worst-case performance of first-order black-box optimization methods. We focus on smooth unconstrained convex minimization over the Euclidean space. Our approach relies on the observation that by definition, the worst-case behavior of a black-box optimization method is by itself an optimization problem, which we call the performance estimation problem (PEP). We formulate and analyze the PEP for two classes of first-order algorithms. We first apply this approach on the classical gradient method and derive a new and tight analytical bound on its performance. We then consider a broader class of first-order black-box methods, which among others, include the so-called heavy-ball method and the fast gradient schemes. We show that for this broader class, it is possible to derive new bounds on the performance of these methods by solving an adequately relaxed convex semidefinite PEP. Finally, we show an efficient procedure for finding optimal step sizes which results in a first-order black-box method that achieves best worst-case performance.
引用
收藏
页码:451 / 482
页数:31
相关论文
共 50 条