Construction of Orthogonal Arrays without Interaction Columns

被引:0
|
作者
Shan-qi Pang
Ya-ping Wang
Ming-yao Ai
机构
[1] Henan Normal University,School of Mathematics and Information Science, Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control
[2] East China Normal University,KLATASDS
[3] Peking University,MOE, School of Statistics
关键词
complex aliasing; difference matrix; Hadamard matrix; Kronecker sum; symmetric array; 62K15; 05B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a new class of orthogonal arrays (OAs), i.e., OAs without interaction columns, are proposed which are applicable in factor screening, interaction detection and other cases. With the tools of di erence matrices, we present some general recursive methods for constructing OAs of such type. Several families of OAs with high percent saturation are constructed. In particular, for any integer λ ≥ 3, such a two-level OA of run 4λ can always be obtained if the corresponding Hadamard matrix exists.
引用
收藏
页码:159 / 168
页数:9
相关论文
共 50 条
  • [41] Construction of Asymmetric Orthogonal Arrays With High Strength
    Lin, Xiao
    Pang, Shanqi
    Wang, Jing
    STAT, 2024, 13 (04):
  • [42] Group strong orthogonal arrays and their construction methodsGroup strong orthogonal arrays and their construction methodsP. Li et al.
    Pengnan Li
    Chunjie Wang
    Bochuan Jiang
    Statistical Papers, 2025, 66 (3)
  • [43] Construction of Nearly Orthogonal Arrays Mappable to Tight Orthogonal Arrays of Strength Two Using Projective Geometry
    Singh, Poonam
    Mazumder, Mukta D.
    Babu, Santosh
    STATISTICS AND APPLICATIONS, 2024, 22 (02): : 307 - 322
  • [44] On the construction of nested orthogonal arrays with the adjacent numbers of levels
    Pang, Shanqi
    Zhu, Yan
    STAT, 2024, 13 (02):
  • [45] Construction of asymmetric orthogonal arrays of high strength by juxtaposition
    Wang, Jing
    Yue, Rong-Xian
    Pang, Shan-Qi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (12) : 2947 - 2957
  • [46] Construction of component orthogonal arrays with any number of components
    Huang, Hengzhen
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 213 : 72 - 79
  • [47] Construction results for strong orthogonal arrays of strength three
    Shi, Chenlu
    Tang, Boxin
    BERNOULLI, 2020, 26 (01) : 418 - 431
  • [48] A CONSTRUCTION OF ORTHOGONAL ARRAYS AND APPLICATIONS TO EMBEDDING-THEOREMS
    CHAFFER, RA
    DISCRETE MATHEMATICS, 1982, 39 (01) : 23 - 29
  • [49] Construction and classification of orthogonal arrays with small numbers of runs
    Ye, Kenny Q.
    Park, DongKwon
    Li, William
    Dean, Angela M.
    STATISTICS AND APPLICATIONS, 2008, 6 (1-2): : 5 - 15
  • [50] Construction of some new families of nested orthogonal arrays
    Zhang, Tian-fang
    Wu, Guobin
    Dey, Aloke
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (03) : 774 - 779