A New Fast Discrete Fourier Transform

被引:0
|
作者
Feng Zhou
Peter Kornerup
机构
[1] Zhejiang University,Department of Information and Electronic Engineering
[2] Odense University,Department of Mathematics and Computer Science
关键词
Fast Fourier Transform; Discrete Fourier Transform; Real Multiplication; Fast Fourier Transform Algorithm; CORDIC Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new fast Discrete Fourier Transform (DFT) algorithm. By rewriting the DFT, a new algorithm is obtained that uses 2n−2(3n−13)+4n−2 real multiplications and 2n−2(7n−29)+6n+2 real additions for a real data N=2n point DFT, comparable to the number of operations in the Split-Radix method, but with slightly fewer multiply and add operations in total. Because of the organization of multiplications as plane rotations in this DFT algorithm, it is possible to apply a pipelined CORDIC algorithm in a hardware implementation of a long-point DFT, e.g., at a 100 MHz input rate, a 1024-point transform can be realized with a 200 MHz clocking of a single CORDIC pipeline.
引用
收藏
页码:219 / 232
页数:13
相关论文
共 50 条
  • [31] DISCRETE FAST FOURIER-TRANSFORM ALGORITHMS - A TUTORIAL SURVEY
    AN, M
    GERTNER, I
    ROFHEART, M
    TOLIMIERI, R
    ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, 1991, 80 : 1 - 67
  • [32] Fast computation of the two-dimensional discrete Fourier transform
    Sundararajan, D
    Ahmad, MO
    PROCEEDINGS OF THE 39TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I-III, 1996, : 759 - 762
  • [33] Fast, Accurate, and Guaranteed Stable Sliding Discrete Fourier Transform
    Park, Chun-Su
    IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (04) : 145 - 156
  • [34] DIGITAL COMPUTATION OF DISCRETE SPECTRA USING FAST FOURIER TRANSFORM
    GLISSON, TH
    BLACK, CI
    SAGE, AP
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1970, AU18 (03): : 271 - &
  • [35] Fast discrete Fourier transform on local fields of positive characteristic
    S. F. Lukomskii
    A. M. Vodolazov
    Problems of Information Transmission, 2017, 53 : 155 - 163
  • [36] Fast Discrete Fourier Transform on Local Fields of Zero Characteristic
    S. F. Lukomskii
    A. M. Vodolazov
    p-Adic Numbers, Ultrametric Analysis and Applications, 2020, 12 : 39 - 48
  • [37] A Fast Discrete Fourier Transform Algorithm Over Gf(28)
    Lin, T. C.
    Truong, T. K.
    Chen, Y. H.
    Lee, C. D.
    INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENVIRONMENTAL ENGINEERING (CSEE 2015), 2015, : 1269 - 1275
  • [38] Fast Discrete Fourier Transform on Local Fields of Positive Characteristic
    Lukomskii, S. F.
    Vodolazov, A. M.
    PROBLEMS OF INFORMATION TRANSMISSION, 2017, 53 (02) : 155 - 163
  • [39] FAST ALGORITHMS TO COMPUTE MULTIDIMENSIONAL DISCRETE FOURIER-TRANSFORM
    GERTNER, I
    TOLIMIERI, R
    REAL-TIME SIGNAL PROCESSING XII, 1989, 1154 : 132 - 146
  • [40] A NEW FORMULATION OF THE FAST FRACTIONAL FOURIER TRANSFORM
    Campos, Rafael G.
    Rico-Melgoza, J.
    Chavez, Edgar
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A1110 - A1125